Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Molecular Targets for Therapy

STAT3 is essential for Hodgkin lymphoma cell proliferation and is a target of tyrphostin AG17 which confers sensitization for apoptosis

Abstract

Classical Hodgkin lymphoma (cHL) is a distinct malignancy of the immune system. Despite the progress made in the understanding of the biology of cHL, the transforming events remain to be elucidated. Recently, we demonstrated that the Janus kinase inhibitor AG490 blocked cellular proliferation and STAT3 phosphorylation in cHL. To explore the potential of constitutively activated STAT3 as a drug target and its role in cHL pathogenesis, different cHL cell lines were analyzed. Treatment of cHL cells by the protein tyrosine kinase inhibitor AG17 was associated with inhibition of cellular proliferation and cell cycle arrest. AG17 treatment was accompanied by decreased levels of STAT3 phosphorylation, whereas NF-κB and p38/SAPK2 signaling were not inhibited. Incubation with AG17 or AG490 sensitized cHL cells to CD95/Fas/Apo-1 or staurosporine-mediated apoptosis. Coincubation of tyrphostins with staurosporine was accompanied by rapid complete inhibition of STAT3 phosphorylation. RNA interference directed against STAT3 in L428 and L1236 cHL cells demonstrated that STAT3 is essential for cell proliferation of these cHL cells. In conclusion, these findings support the concept that STAT3 signaling is important in the pathogenesis of cHL and tyrphostins are agents for developing new therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 6
Figure 4
Figure 5
Figure 7

Similar content being viewed by others

References

  1. Küppers R . Molecular biology of Hodgkin's lymphoma. Adv Cancer Res 2002; 84: 277–312.

    Article  PubMed  Google Scholar 

  2. Küppers R, Kanzler H, Hansmann ML, Rajewsky K . Single cell analysis of Hodgkin/Reed–Sternberg cells. Ann Oncol 1996; 4: 27–30.

    Article  Google Scholar 

  3. Vockerodt M, Belge G, Kube D, Irsch J, Siebert R, Tesch H et al. An unbalanced translocation involving chromosome 14 is the probable cause for loss of potentially functional rearranged immunoglobulin heavy chain genes in the Epstein–Barr virus-positive Hodgkin's lymphoma-derived cell line L591. Br J Haematol 2002; 119: 640–646.

    Article  CAS  PubMed  Google Scholar 

  4. Vockerodt M, Soares M, Kanzler H, Küppers R, Kube D, Hansmann ML et al. Detection of clonal Hodgkin and Reed–Sternberg cells with identical somatically mutated and rearranged V(H) genes in different biopsies in relapsed Hodgkin's disease. Blood 1998; 92: 2899–2907.

    CAS  PubMed  Google Scholar 

  5. Kube D, Holtick U, Vockerodt M, Ahmadi T, Haier B, Behrmann I et al. STAT3 is constitutively activated in Hodgkin cell lines. Blood 2001; 98: 762–770.

    Article  CAS  PubMed  Google Scholar 

  6. Chen HL, Lee JM, Zong YS, Borowitz M, Ng MH, Ambinder RF et al. Linkage between STAT regulation and Epstein–Barr virus gene expression in tumors. J Virol 2001; 75: 2929–2937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Skinnider B, Elia A, Gascoyne R, Patterson B, Trumper L, Kapp U et al. Signal transducer and activator of transcription 6 is frequently activated in Hodgkin and Reed–Sternberg cells of Hodgkin lymphoma. Blood 2002; 99: 618–626.

    Article  CAS  PubMed  Google Scholar 

  8. Benekli M, Baer M, Baumann H, Wetzler M . Signal transducer and activator of transcription proteins in leukemias. Blood 2003; 101: 2940–2954.

    Article  CAS  PubMed  Google Scholar 

  9. Hirano T, Ishihara K, Hibi M . Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 2000; 19: 2548–2556.

    Article  CAS  PubMed  Google Scholar 

  10. Bromberg J . STAT proteins and oncogenesis. J Clin Invest 2002; 109: 1139–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu H, Jove R . The STATs of cancer – new molecular targets come of age. Nat Immunol 2004; 4: 97–105.

    CAS  Google Scholar 

  12. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F . Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003; 374: 1–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Diehl V, Thomas RK, Re D . Part II: Hodgkin's lymphoma – diagnosis and treatment. Lancet Oncol 2004; 5: 19–26.

    Article  CAS  PubMed  Google Scholar 

  14. Maggio E, van Den Berg A, de Jong D, Diepstra A, Poppema S . Low frequency of FAS mutations in Reed-Sternberg cells of Hodgkin's lymphoma. Am J Pathol 2003; 162: 29–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thomas R, Kallenborn A, Wickenhauser C, Schultze J, Draube A, Vockerodt M et al. Constitutive expression of c-FLIP in Hodgkin and Reed–Sternberg cells. Amer J Pathol 2002; 160: 1521–1528.

    Article  CAS  Google Scholar 

  16. Levitzki A . Tyrosine kinases as targets for cancer therapy. Eur J Cancer 2002; 38: S11–S18.

    Article  PubMed  Google Scholar 

  17. Meydan N, Grunberger T, Dadi H, Shahar M, Arpaia E, Lapidot Z et al. Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature 1996; 379: 645–648.

    Article  CAS  PubMed  Google Scholar 

  18. De Vos J, Jourdan M, Tarte K, Jasmin C, Klein B . JAK2 tyrosine kinase inhibitor tyrphostin AG490 downregulates the mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription (STAT) pathways and induces apoptosis in myeloma cells. Br J Haematol 2000; 109: 823–828.

    Article  CAS  PubMed  Google Scholar 

  19. Nielsen M, Kaltoft K, Nordahl M, Ropke C, Geisler C, Mustelin T et al. Constitutive activation of a slowly migrating isoform of Stat3 in mycosisfungoides: Tyrphostin AG490 inhibits Stat3 activation and growth of mycosis fungoides tumor cell lines. Proc Nat Acad Sci USA 1997; 94: 6764–6769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bharti A, Donato N, Aggarwal B . Curcurnin (diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells. J Immunol 2003; 171: 3863–3871.

    Article  CAS  PubMed  Google Scholar 

  21. Alas S, Bonavida B . Inhibition of constitutive STAT3 activity sensitizes resistant non-Hodgkin's lymphoma and multiple myeloma to chemotherapeutic drug-mediated apoptosis. Clin Cancer Res 2003; 9: 316–326.

    CAS  PubMed  Google Scholar 

  22. Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Cell 1999; 10: 105–115.

    CAS  Google Scholar 

  23. Nielsen M, Kaestel CG, Eriksen KW, Woetmann A, Stokkedal T, Kaltoft K et al. Inhibition of constitutively activated Stat3 correlates with altered Bcl-2/Bax expression and induction of apoptosis in mycosis fungoides tumor cells. Leukemia 1999; 13: 735–738.

    Article  CAS  PubMed  Google Scholar 

  24. Palumbo G, Yarom N, Gazit A, Sandalon Z, Baniyash M, Kleinberger D et al. The tryphostin AG17 induces apoptosis and inhibition of cdk2 activity in a lymphoma cell line that overexpresses bcl-2. Cancer Res 1997; 57: 2434–2439.

    CAS  PubMed  Google Scholar 

  25. Fuortes M, Melchior M, Han H, Lyon G, Nathan C . Role of the tyrosine kinase pyk2 in the integrin-dependent activation of human neutrophils by TNF. J Clin Invest 1999; 104: 327–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gillespie J, Dye JF, Schachter M, Guillou PJ . Inhibition of pancreatic cancer cell growth in vitro by the tyrphostin group of tyrosine kinase inhibitors. Br J Cancer 1993; 68: 1122–1126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Engels IH, Stepczynska A, Stroh C, Lauber K, Berg C, Schwenzer R et al. Caspase-8/FLICE functions as an executioner caspase in anticancer drug-induced apoptosis. Oncogene 2000; 19: 4563–4573.

    Article  CAS  PubMed  Google Scholar 

  28. Kube D, Vockerodt M . Transient gene expression and MACS enrichment. Methods Mol Biol 2001; 174: 155–164.

    CAS  PubMed  Google Scholar 

  29. Kube D, Vockerodt M, Weber O, Hell K, Wolf J, Haier B et al. Expression of Epstein–Barr virus nuclear antigen 1 is associated with enhanced expression of CD25 in the Hodgkin cell line L428. J Virol 1999; 73: 1630–1636.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kashkar H, Kronke M, Jurgensmeier JM . Defective Bax activation in Hodgkin B-cell lines confers resistance to staurosporine-induced apoptosis. Cell Death Differ 2002; 9: 750–757.

    Article  CAS  PubMed  Google Scholar 

  31. Hinz M, Lemke P, Anagnostopoulos I, Hacker C, Krappmann D, Mathas S et al. Nuclear factor kappa B-dependent gene expression profiling of Hodgkin's disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J Exp Med 2002; 196: 605–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Metkar SS, Manna PP, Anand M, Naresh KN, Advani SH, Nadkarni JJ . CD40 ligand – an anti-apoptotic molecule in Hodgkin's disease. Cancer Biother Radiopharm 2001; 16: 85–92.

    Article  CAS  PubMed  Google Scholar 

  33. Kashkar H, Haefs C, Shin H, Hamilton-Dutoit SJ, Salvesen GS, Kronke M et al. XIAP-mediated caspase inhibition in Hodgkin's lymphoma-derived B cells. J Exp Med 2003; 198: 341–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sommer VH, Clemmensen OJ, Nielsen O, Wasik M, Lovato P, Brender C et al. In vivo activation of STAT3 in cutaneous T-cell lymphoma. Evidence for an antiapoptotic function of STAT3. Leukemia 2004; 18: 1288–1295.

    Article  CAS  PubMed  Google Scholar 

  35. Bargou R, Emmerich F, Krappmann D, Bommert K, Mapara M, Arnold W et al. Constitutive nuclear factor-kappab-RelA activation is required for proliferation and survival of Hodgkin's disease tumor cells. J Clin Investig 1997; 100: 2961–2969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hinz M, Löser P, Mathas S, Krappmann D, Dörken B, Scheidereit C . Constitutive NF-kappaB maintains high expression of a characteristic gene network, including CD40, CD86, and a set of antiapoptotic genes in H-RS cells. Blood 2001; 97: 2798–2807.

    Article  CAS  PubMed  Google Scholar 

  37. Garcia J, Camacho F, Morente M, Fraga M, Montalban C, Alvaro T et al. Hodgkin and Reed–Sternberg cells harbor alterations in the major tumor suppressor pathways and cell-cycle checkpoints: analyses using tissue microarrays. Blood 2003; 101: 681–689.

    Article  CAS  PubMed  Google Scholar 

  38. Wood K, Roff M, Hay R . Defective IκBα in Hodgkin cell lines with constitutively active NF-κB. Oncogene 1998; 16: 2131–2139.

    Article  CAS  PubMed  Google Scholar 

  39. Mathas S, Hinz M, Anagnostopoulos L, Krappmann D, Lietz A, Jundt F et al. Aberrantly expressed c-Jun and JunB are a hallmark of Hodgkin lymphoma cells, stimulate proliferation and synergize with NF-kappa B. Embo J 2002; 21: 4104–4113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zheng B, Fiumara P, Li YV, Georgakis G, Snell V, Younes M et al. MEK/ERK pathway is aberrantly active in Hodgkin disease: a signaling pathway shared by CD30, CD40, and RANK that regulates cell proliferation and survival. Blood 2003; 102: 1019–1027.

    Article  CAS  PubMed  Google Scholar 

  41. Ohmori Y, Schreiber RD, Hamilton TA . Synergy between interferon-gamma and tumor necrosis factor-alpha in transcriptional activation is mediated by cooperation between signal transducer and activator of transcription 1 and nuclear factor kappaB. J Biol Chem 1997; 272: 14899–14907.

    Article  CAS  PubMed  Google Scholar 

  42. Yoshida Y, Kumar A, Koyama Y, Peng H, Arman A, Boch JA et al. Interleukin 1 activates STAT3/nuclear factor-kappaB cross-talk via a unique TRAF6- and p65-dependent mechanism. J Biol Chem 2004; 279: 1768–1776.

    Article  CAS  PubMed  Google Scholar 

  43. Litterst CM, Pfitzner E . Transcriptional activation by STAT6 requires the direct interaction with NCoA-1. J Biol Chem 2001; 276: 45713–45721.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to K Matthias, EM Choi and F von Bonin for technical assistance in some experiments, I Behrmann, E Pfitzner, H Tesch, PC Heinrich and RK Thomas for helpful discussions. This work was supported by grants from the Deutsche Forschungsgemeinschaft within the Sonderforschungsbereich 399 (LT), DFG Ku 954/7-1 (DK), DFG We 1801/1 (SW), the ‘Forschungsförderungsprogramm des Fachbereich Humanmedizin’ of the Georg-August-Universität Göttingen to DK and a fellowship of the ‘Köln Fortune Programm’ of the Universität zu Köln to UH, the German Bundesministerium fuer Bildung und Forschung (Hep-Net; SW), the Landesforschungsschwerpunktprogramm of the Ministry of Science, Research and Arts of the Land Baden-Württemberg (SW), and from the Fortune Program of the University of Tübingen (No. 1250-0-0; KL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Kube.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holtick, U., Vockerodt, M., Pinkert, D. et al. STAT3 is essential for Hodgkin lymphoma cell proliferation and is a target of tyrphostin AG17 which confers sensitization for apoptosis. Leukemia 19, 936–944 (2005). https://doi.org/10.1038/sj.leu.2403750

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403750

Keywords

This article is cited by

Search

Quick links