Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Lymphoma

Genetic heterogeneity of the hypervariable region I of Hepatitis C virus and lymphoproliferative disorders

Abstract

B-cell lymphoproliferative disorders (BCLD) have been associated with chronic hepatitis C virus (HCV) infection. The HCV glycoprotein E2 (gpE2) hypervariable region I (HVR-I) may be a potential antigenic candidate to promote B-cell proliferation. The purpose of this study was to analyze the influence of HVR-I sequence variability in the development of BCLD. HVR-I sequences were studied in 29 chronically HCV-infected patients with (n=15) or without (n=14) BCLD. After PCR amplification of the gpE2 region, analysis of the 81 bp HVR-I encoding fragment was performed on 7–18 clones per patient. HVR-I sequence complexity was slightly lower in patients with BCLD (mean 0.347) than without (0.468) (P=0.2), though, sequence diversities were similar (0.0370 vs 0.0954, P=0.239). Phylogenetic analysis did not reveal any BCLD-associated clustering. In our population, neither the recently described insertion between positions 1 and 2 of HVR-I nor residues at positions 4 and 13 were particularly linked to BCLD. As previously described, we confirm the high degree of conservation of HVR-I residues T-2, G-6 and G-23 in our patients. Contrary to recent findings, our analysis based on multiple clones per patient analysis did not reveal any particular motif associated with BCLD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Lauer GM, Walker BD . Hepatitis C virus infection. N Engl J Med 2001; 345: 41–52.

    Article  CAS  Google Scholar 

  2. Brouet JC, Clauvel JP, Danon F, Klein M, Seligmann M . Biologic and clinical significance of cryoglobulins. A report of 86 cases. Am J Med 1974; 57: 775–788.

    Article  CAS  Google Scholar 

  3. Agnello V, Chung RT, Kaplan LM . A role for hepatitis C virus infection in type II cryoglobulinemia. N Engl J Med 1992; 327: 1490–1495.

    Article  CAS  Google Scholar 

  4. De Vita S, De Re V, Gasparotto D, Ballare M, Pivetta B, Ferraccioli G et al. Oligoclonal non-neoplastic B cell expansion is the key feature of type II mixed cryoglobulinemia: clinical and molecular findings do not support a bone marrow pathologic diagnosis of indolent B cell lymphoma. Arthritis Rheum 2000; 43: 94–102.

    Article  CAS  Google Scholar 

  5. Ferri C, Caracciolo F, Zignego AL, La Civita L, Monti M, Longombardo G et al. Hepatitis C virus infection in patients with non-Hodgkin's lymphoma. Br J Haematol 1994; 88: 392–394.

    Article  CAS  Google Scholar 

  6. La Civita L, Zignego AL, Monti M, Longombardo G, Pasero G, Ferri C . Mixed cryoglobulinemia as a possible preneoplastic disorder. Arthritis Rheum 1995; 38: 1859–1860.

    Article  CAS  Google Scholar 

  7. Gisbert JP, Garcia-Buey L, Pajares JM, Moreno-Otero R . Prevalence of hepatitis C virus infection in B-cell non-Hodgkin's lymphoma: systematic review and meta-analysis. Gastroenterology 2003; 125: 1723–1732.

    Article  Google Scholar 

  8. Ivanovski M, Silvestri F, Pozzato G, Anand S, Mazzaro C, Burrone OR et al. Somatic hypermutation, clonal diversity, and preferential expression of the VH 51p1/VL kv325 immunoglobulin gene combination in hepatitis C virus-associated immunocytomas. Blood 1998; 91: 2433–2442.

    CAS  PubMed  Google Scholar 

  9. Sansonno D, De Vita S, Iacobelli AR, Cornacchiulo V, Boiocchi M, Dammacco F . Clonal analysis of intrahepatic B cells from HCV-infected patients with and without mixed cryoglobulinemia. J Immunol 1998; 160: 3594–3601.

    CAS  PubMed  Google Scholar 

  10. Dammacco F, Gatti P, Sansonno D . Hepatitis C virus infection, mixed cryoglobulinemia, and non-Hodgkin's lymphoma: an emerging picture. Leuk Lymphoma 1998; 31: 463–476.

    Article  CAS  Google Scholar 

  11. De Re V, De Vita S, Marzotto A, Gloghini A, Pivetta B, Gasparotto D et al. Pre-malignant and malignant lymphoproliferations in an HCV-infected type II mixed cryoglobulinemic patient are sequential phases of an antigen-driven pathological process. Int J Cancer 2000; 87: 211–216.

    Article  CAS  Google Scholar 

  12. De Re V, De Vita S, Marzotto A, Rupolo M, Gloghini A, Pivetta B et al. Sequence analysis of the immunoglobulin antigen receptor of hepatitis C virus-associated non-Hodgkin lymphomas suggests that the malignant cells are derived from the rheumatoid factor-producing cells that occur mainly in type II cryoglobulinemia. Blood 2000; 96: 3578–3584.

    CAS  PubMed  Google Scholar 

  13. Quinn ER, Chan CH, Hadlock KG, Foung SK, Flint M, Levy S . The B-cell receptor of a hepatitis C virus (HCV)-associated non-Hodgkin lymphoma binds the viral E2 envelope protein, implicating HCV in lymphomagenesis. Blood 2001; 98: 3745–3749.

    Article  CAS  Google Scholar 

  14. Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F, Petracca R et al. Binding of hepatitis C virus to CD81. Science 1998; 282: 938–941.

    Article  CAS  Google Scholar 

  15. Fearon DT, Carroll MC . Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu Rev Immunol 2000; 18: 393–422.

    Article  CAS  Google Scholar 

  16. Farci P, Alter HJ, Wong DC, Miller RH, Govindarajan S, Engle R et al. Prevention of hepatitis C virus infection in chimpanzees after antibody-mediated in vitro neutralization. Proc Natl Acad Sci USA 1994; 91: 7792–7796.

    Article  CAS  Google Scholar 

  17. Shimizu YK, Hijikata M, Iwamoto A, Alter HJ, Purcell RH, Yoshikura H . Neutralizing antibodies against hepatitis C virus and the emergence of neutralization escape mutant viruses. J Virol 1994; 68: 1494–1500.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kato N, Ootsuyama Y, Sekiya H, Ohkoshi S, Nakazawa T, Hijikata M et al. Genetic drift in hypervariable region 1 of the viral genome in persistent hepatitis C virus infection. J Virol 1994; 68: 4776–4784.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ishii K, Rosa D, Watanabe Y, Katayama T, Harada H, Wyatt C et al. High titers of antibodies inhibiting the binding of envelope to human cells correlate with natural resolution of chronic hepatitis C. Hepatology 1998; 28: 1117–1120.

    Article  CAS  Google Scholar 

  20. Gerotto M, Dal Pero F, Loffreda S, Bianchi FB, Alberti A, Lenzi M . A 385 insertion in the hypervariable region 1 of hepatitis C virus E2 envelope protein is found in some patients with mixed cryoglobulinemia type 2. Blood 2001; 98: 2657–2663.

    Article  CAS  Google Scholar 

  21. Vallat L, Benhamou Y, Gutierrez M, Ghillani P, Hercher C, Thibault V et al. Clonal B cell populations in the blood and liver of patients with chronic hepatitis C virus infection. Arthritis Rheum 2004; 50: 3668–3678.

    Article  Google Scholar 

  22. Brisco MJ, Tan LW, Orsborn AM, Morley AA . Development of a highly sensitive assay, based on the polymerase chain reaction, for rare B-lymphocyte clones in a polyclonal population. Br J Haematol 1990; 75: 163–167.

    Article  CAS  Google Scholar 

  23. Deane M, McCarthy KP, Wiedemann LM, Norton JD . An improved method for detection of B-lymphoid clonality by polymerase chain reaction. Leukemia 1991; 5: 726–730.

    CAS  PubMed  Google Scholar 

  24. Thompson JD, Higgins DG, Gibson TJ . CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673–4680.

    Article  CAS  Google Scholar 

  25. Puntoriero G, Meola A, Lahm A, Zucchelli S, Ercole BB, Tafi R et al. Towards a solution for hepatitis C virus hypervariability: mimotopes of the hypervariable region 1 can induce antibodies cross-reacting with a large number of viral variants. Embo J 1998; 17: 3521–3533.

    Article  CAS  Google Scholar 

  26. Kumar S, Tamura K, Jakobsen IB, Nei M . MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 2001; 17: 1244–1245.

    Article  CAS  Google Scholar 

  27. Allander T, Forns X, Emerson SU, Purcell RH, Bukh J . Hepatitis C virus envelope protein E2 binds to CD81 of tamarins. Virology 2000; 277: 358–367.

    Article  CAS  Google Scholar 

  28. Bartosch B, Vitelli A, Granier C, Goujon C, Dubuisson J, Pascale S et al. Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor. J Biol Chem 2003; 278: 41624–41630.

    Article  CAS  Google Scholar 

  29. Hofmann WP, Herrmann E, Kronenberger B, Merkwirth C, Welsch C, Lengauer T et al. Association of HCV-related mixed cryoglobulinemia with specific mutational pattern of the HCV E2 protein and CD81 expression on peripheral B lymphocytes. Blood 2004; 104: 1228–1229.

    Article  CAS  Google Scholar 

  30. Penin F, Combet C, Germanidis G, Frainais PO, Deleage G, Pawlotsky JM . Conservation of the conformation and positive charges of hepatitis C virus E2 envelope glycoprotein hypervariable region 1 points to a role in cell attachment. J Virol 2001; 75: 5703–5710.

    Article  CAS  Google Scholar 

  31. Gowans EJ . Distribution of markers of hepatitis C virus infection throughout the body. Semin Liver Dis 2000; 20: 85–102.

    Article  CAS  Google Scholar 

  32. Shimizu YK, Igarashi H, Kanematu T, Fujiwara K, Wong DC, Purcell RH et al. Sequence analysis of the hepatitis C virus genome recovered from serum, liver, and peripheral blood mononuclear cells of infected chimpanzees. J Virol 1997; 71: 5769–5773.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gardner JP, Durso RJ, Arrigale RR, Donovan GP, Maddon PJ, Dragic T et al. L-SIGN (CD 209L) is a liver-specific capture receptor for hepatitis C virus. Proc Natl Acad Sci USA 2003; 100: 4498–4503.

    Article  CAS  Google Scholar 

  34. Hofmann WP, Sarrazin C, Kronenberger B, Schonberger B, Bruch K, Zeuzem S . Mutations within the CD81-binding sites and hypervariable region 2 of the envelope 2 protein: correlation with treatment response in hepatitis C virus-infected patients. J Infect Dis 2003; 187: 982–987.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Thibault.

Additional information

This work was supported by a grant from ANRS (Agence Nationale de Recherches sur le Sida).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rigolet, A., Cacoub, P., Schnuriger, A. et al. Genetic heterogeneity of the hypervariable region I of Hepatitis C virus and lymphoproliferative disorders. Leukemia 19, 1070–1076 (2005). https://doi.org/10.1038/sj.leu.2403731

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403731

Keywords

Search

Quick links