Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Apoptosis

Nonproliferating CML CD34+ progenitors are resistant to apoptosis induced by a wide range of proapoptotic stimuli

Abstract

Imatinib mesylate, a Bcr-Abl kinase inhibitor, has been very successful in the treatment of chronic myelogenous leukemia (CML). However, the majority of patients achieving cytogenetic remissions with imatinib treatment have molecular evidence of persistent disease, and residual BCR/ABL+ progenitors can be detected. There is a need to develop new approaches that enhance elimination of malignant progenitors in imatinib-treated patients. Here we show that CML CD34+ progenitors are sensitive to several apoptosis-inducing stimuli including the chemotherapeutic agents Ara-C and VP-16, radiation, arsenic trioxide, ceramide, growth factor withdrawal, and the death receptor activators TNFα and TRAIL. Bcr-Abl kinase inhibition by imatinib did not enhance sensitivity of CML progenitors to Ara-C, VP-16, ceramide, radiation or TRAIL-induced apoptosis but did enhance arsenic and TNFα-induced apoptosis. We further demonstrate that apoptosis was restricted to dividing cells, whereas nonproliferating BCR/ABL+ CD34+ cells were resistant to apoptosis induced by imatinib, Ara-C or arsenic, either alone or in combination. Resistance of quiescent CML progenitors to imatinib-induced apoptosis could contribute to persistence of residual malignant progenitors in imatinib-treated patients. Combination treatment with Ara-C or arsenic may not enhance targeting of nonproliferating CML progenitors. The assay described here may be useful for identifying agents targeting quiescent CML progenitors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Fialkow PJ, Jacobson RJ, Papayannopoulou T . Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage. Am J Med 1977; 63: 125–130.

    CAS  PubMed  Google Scholar 

  2. Rowley JD . Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243: 290–293.

    Article  CAS  PubMed  Google Scholar 

  3. Daley GQ, Baltimore D . Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/abl protein. Proc Natl Acad Sci USA 1988; 85: 9312–9316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Daley GQ, Van Etten RA, Baltimore D . Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990; 247: 824–830.

    Article  CAS  PubMed  Google Scholar 

  5. Pear WS, Miller JP, Xu L, Pui JC, Soffer B, Quackenbush RC et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 1998; 92: 3780–3792.

    CAS  PubMed  Google Scholar 

  6. Zhang X, Ren R . Bcr-Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte–macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia. Blood 1998; 92: 3829–3840.

    CAS  PubMed  Google Scholar 

  7. Lugo TG, Pendergast AM, Muller AJ, Witte ON . Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 1990; 247: 1079–1082.

    Article  CAS  PubMed  Google Scholar 

  8. Buchdunger E, Zimmermann J, Mett H, Meyer T, Muller M, Druker BJ et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res 1996; 56: 100–104.

    CAS  PubMed  Google Scholar 

  9. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996; 2: 561–566.

    Article  CAS  PubMed  Google Scholar 

  10. Deininger MW, Goldman JM, Lydon N, Melo JV . The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells. Blood 1997; 90: 3691–3698.

    CAS  PubMed  Google Scholar 

  11. Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 2002; 346: 645–652.

    Article  CAS  PubMed  Google Scholar 

  12. Sawyers CL, Hochhaus A, Feldman E, Goldman JM, Miller CB, Ottmann OG et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 2002; 99: 3530–3539.

    Article  CAS  PubMed  Google Scholar 

  13. Talpaz M, Silver RT, Druker BJ, Goldman JM, Gambacorti-Passerini C, Guilhot F et al. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood 2002; 99: 1928–1937.

    Article  CAS  PubMed  Google Scholar 

  14. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2001; 344: 1038–1042.

    Article  CAS  PubMed  Google Scholar 

  15. Hughes T, Branford S . Molecular monitoring of chronic myeloid leukemia. Semin Hematol 2003; 40 (Suppl 2): 62–68.

    Article  CAS  PubMed  Google Scholar 

  16. Branford S, Rudzki Z, Harper A, Grigg A, Taylor K, Durrant S et al. Imatinib produces significantly superior molecular responses compared to interferon alfa plus cytarabine in patients with newly diagnosed chronic myeloid leukemia in chronic phase. Leukemia 2003; 17: 2401–2409.

    Article  CAS  PubMed  Google Scholar 

  17. Bhatia R, Holtz M, Niu N, Gray R, Snyder DS, Sawyers CL et al. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 2003; 101: 4701–4707.

    Article  CAS  PubMed  Google Scholar 

  18. Holtz MS, Slovak ML, Zhang F, Sawyers CL, Forman SJ, Bhatia R . Imatinib mesylate (STI571) inhibits growth of primitive malignant progenitors in chronic myelogenous leukemia through reversal of abnormally increased proliferation. Blood 2002; 99: 3792–3800.

    Article  CAS  PubMed  Google Scholar 

  19. Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 2002; 99: 319–325.

    Article  CAS  PubMed  Google Scholar 

  20. Marley SB, Deininger MW, Davidson RJ, Goldman JM, Gordon MY . The tyrosine kinase inhibitor STI571, like interferon-alpha, preferentially reduces the capacity for amplification of granulocyte–macrophage progenitors from patients with chronic myeloid leukemia. Exp Hematol 2000; 28: 551–557.

    Article  CAS  PubMed  Google Scholar 

  21. Bhatia R, McGlave PB, Dewald GW, Blazar BR, Verfaillie CM . Abnormal function of the bone marrow microenvironment in chronic myelogenous leukemia: role of malignant stromal macrophages. Blood 1995; 85: 3636–3645.

    CAS  PubMed  Google Scholar 

  22. Gupta P, Blazar BR, Gupta K, Verfaillie CM . Human CD34(+) bone marrow cells regulate stromal production of interleukin-6 and granulocyte colony-stimulating factor and increase the colony-stimulating activity of stroma. Blood 1998; 91: 3724–3733.

    CAS  PubMed  Google Scholar 

  23. Chu S, Xu H, Shah NP, Snyder DS, Forman SJ, Sawyers CL et al. Detection of BCR-ABL kinase mutations in CD34+ cells from chronic myelogenous leukemia patients in complete cytogenetic remission on imatinib mesylate treatment. Blood 2005; 105: 2093–2098.

    Article  CAS  PubMed  Google Scholar 

  24. McGahon A, Bissonnette R, Schmitt M, Cotter KM, Green DR, Cotter TG . BCR-ABL maintains resistance of chronic myelogenous leukemia cells to apoptotic cell death. Blood 1994; 83: 1179–1187.

    CAS  PubMed  Google Scholar 

  25. Bedi A, Barber JP, Bedi GC, el-Deiry WS, Sidransky D, Vala MS et al. BCR-ABL-mediated inhibition of apoptosis with delay of G2/M transition after DNA damage: a mechanism of resistance to multiple anticancer agents. Blood 1995; 86: 1148–1158.

    CAS  PubMed  Google Scholar 

  26. Dubrez L, Eymin B, Sordet O, Droin N, Turhan AG, Solary E . BCR-ABL delays apoptosis upstream of procaspase-3 activation. Blood 1998; 91: 2415–2422.

    CAS  PubMed  Google Scholar 

  27. Amarante-Mendes GP, Naekyung Kim C, Liu L, Huang Y, Perkins CL, Green DR et al. Bcr-Abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome C and activation of caspase-3. Blood 1998; 91: 1700–1705.

    CAS  PubMed  Google Scholar 

  28. Thiesing JT, Ohno-Jones S, Kolibaba KS, Druker BJ . Efficacy of STI571, an abl tyrosine kinase inhibitor, in conjunction with other antileukemic agents against bcr-abl-positive cells. Blood 2000; 96: 3195–3199.

    CAS  PubMed  Google Scholar 

  29. Amos TA, Lewis JL, Grand FH, Gooding RP, Goldman JM, Gordon MY . Apoptosis in chronic myeloid leukaemia: normal responses by progenitor cells to growth factor deprivation, X-irradiation and glucocorticoids. Br J Haematol 1995; 91: 387–393.

    Article  CAS  PubMed  Google Scholar 

  30. Albrecht T, Schwab R, Henkes M, Peschel C, Huber C, Aulitzky WE . Primary proliferating immature myeloid cells from CML patients are not resistant to induction of apoptosis by DNA damage and growth factor withdrawal. Br J Haematol 1996; 95: 501–507.

    Article  CAS  PubMed  Google Scholar 

  31. Cambier N, Chopra R, Strasser A, Metcalf D, Elefanty AG . BCR-ABL activates pathways mediating cytokine independence and protection against apoptosis in murine hematopoietic cells in a dose-dependent manner. Oncogene 1998; 16: 335–348.

    Article  CAS  PubMed  Google Scholar 

  32. La Rosee P, Johnson K, O'Dwyer ME, Druker BJ . In vitro studies of the combination of imatinib mesylate (Gleevec) and arsenic trioxide (Trisenox) in chronic myelogenous leukemia. Exp Hematol 2002; 30: 729–737.

    Article  CAS  PubMed  Google Scholar 

  33. Nimmanapalli R, Bali P, O'Bryan E, Fuino L, Guo F, Wu J et al. Arsenic trioxide inhibits translation of mRNA of bcr-abl, resulting in attenuation of Bcr-Abl levels and apoptosis of human leukemia cells. Cancer Res 2003; 63: 7950–7958.

    CAS  PubMed  Google Scholar 

  34. Puccetti E, Guller S, Orleth A, Bruggenolte N, Hoelzer D, Ottmann OG et al BCR-ABL mediates arsenic trioxide-induced apoptosis independently of its aberrant kinase activity. Cancer Res 2000; 60: 3409–3413.

    CAS  PubMed  Google Scholar 

  35. Topaly J, Zeller WJ, Fruehauf S . Synergistic activity of the new ABL-specific tyrosine kinase inhibitor STI571 and chemotherapeutic drugs on BCR-ABL-positive chronic myelogenous leukemia cells. Leukemia 2001; 15: 342–347.

    Article  CAS  PubMed  Google Scholar 

  36. Kano Y, Akutsu M, Tsunoda S, Mano H, Sato Y, Honma Y et al. In vitro cytotoxic effects of a tyrosine kinase inhibitor STI571 in combination with commonly used antileukemic agents. Blood 2001; 97: 1999–2007.

    Article  CAS  PubMed  Google Scholar 

  37. Scappini B, Onida F, Kantarjian HM, Dong L, Verstovsek S, Keating MJ et al. In vitro effects of STI 571-containing drug combinations on the growth of Philadelphia-positive chronic myelogenous leukemia cells. Cancer 2002; 94: 2653–2662.

    Article  CAS  PubMed  Google Scholar 

  38. Fang G, Kim CN, Perkins CL, Ramadevi N, Winton E, Wittmann S et al. CGP57148B (STI-571) induces differentiation and apoptosis and sensitizes Bcr-Abl-positive human leukemia cells to apoptosis due to antileukemic drugs. Blood 2000; 96: 2246–2253.

    CAS  PubMed  Google Scholar 

  39. Braess J, Wegendt C, Feuring-Buske M, Riggert J, Kern W, Hiddemann W et al. Leukaemic blasts differ from normal bone marrow mononuclear cells and CD34+ haemopoietic stem cells in their metabolism of cytosine arabinoside. Br J Haematol 1999; 105: 388–393.

    Article  CAS  PubMed  Google Scholar 

  40. Borodyansky L, Li YZ, Pardee AB, Li CJ . Apoptosis in non-proliferating cells: implications for viral infection and tumourigenesis. Apoptosis 1998; 3: 381–385.

    Article  CAS  PubMed  Google Scholar 

  41. La Rosee P, Shen L, Stoffregen EP, Deininger M, Druker BJ . No correlation between the proliferative status of Bcr-Abl positive cell lines and the proapoptotic activity of imatinib mesylate (Gleevec/Glivec). Hematol J 2003; 4: 413–419.

    Article  CAS  PubMed  Google Scholar 

  42. Burger H, Van Tol H, Boersma AW, Brok M, Wiemer EA, Stoter G et al. Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood 2004; 104: 2940–2942.

    Article  CAS  PubMed  Google Scholar 

  43. Konopleva M, Zhao S, Hu W, Jiang S, Snell V, Weidner D et al. The anti-apoptotic genes Bcl-X(L) and Bcl-2 are over-expressed and contribute to chemoresistance of non-proliferating leukaemic CD34+ cells. Br J Haematol 2002; 118: 521–534.

    Article  CAS  PubMed  Google Scholar 

  44. Chu S, Holtz M, Gupta M, Bhatia R . BCR/ABL kinase inhibition by imatinib mesylate enhances MAP kinase activity in chronic myelogenous leukemia CD34+ cells. Blood 2004; 103: 3167–3174.

    Article  CAS  PubMed  Google Scholar 

  45. Donato NJ, Wu JY, Stapley J, Lin H, Arlinghaus R, Aggarwal BB et al. Imatinib mesylate resistance through BCR-ABL independence in chronic myelogenous leukemia. Cancer Res 2004; 64: 672–677.

    Article  CAS  PubMed  Google Scholar 

  46. Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 2001; 98: 2301–2307.

    Article  CAS  PubMed  Google Scholar 

  47. Radich JP, Gooley T, Bryant E, Chauncey T, Clift R, Beppu L et al. The significance of bcr-abl molecular detection in chronic myeloid leukemia patients ‘late,’ 18 months or more after transplantation. Blood 2001; 98: 1701–1707.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Lucy Brown and Claude Spalla of the Analytical Cytometry Core for assistance with cell sorting and Dr Marilyn L Slovak and Bill Poehner of the Cytogenetics Core Laboratory for FISH analysis. In addition, we are indebted to Tinisha McDonald for sample processing, Helen Xu for Q-PCR analysis, and Allen Lin and the physicians and staff in Division of Hematology/HCT for assistance with patient samples. This work was supported in part by NIH Grant R01 CA95684, Translational Research Grant 6468 (Leukemia and Lymphoma Society) and General Clinical Research Center Grant #5M01 RR00043. Ravi Bhatia is a Clinical Scholar of the Leukemia and Lymphoma Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Bhatia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holtz, M., Forman, S. & Bhatia, R. Nonproliferating CML CD34+ progenitors are resistant to apoptosis induced by a wide range of proapoptotic stimuli. Leukemia 19, 1034–1041 (2005). https://doi.org/10.1038/sj.leu.2403724

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403724

Keywords

This article is cited by

Search

Quick links