Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Myeloma

Effector γδ T cells and tumor cells as immune targets of zoledronic acid in multiple myeloma

Abstract

The aim of this study was to investigate the in vitro immunomodulatory effects of zoledronic acid (Zol) on peripheral blood Vγ9/Vδ2 (γδ) T cells of normal donors and multiple myeloma (MM) patients. γδ T cells were stimulated with Zol and low doses of interleukin-2 (IL-2), and then analyzed for proliferation, cytokine production, and generation of effector activity against myeloma cell lines and primary myeloma cells. Proliferation of γδ T cells was observed in 100% of normal donors and 50% of MM patients. γδ T cells produced IFN-γ, surface mobilized the CD107a and CD107b antigens, and exerted direct cell-to-cell antimyeloma activity irrespective of the ability to proliferate to Zol and IL-2. The memory phenotype was predominant in the MM γδ T cells that proliferated in response to Zol (responders), whereas effector cells were predominant in those that did not (nonresponders). Zol induced antimyeloma activity through the monocyte-dependent activation of γδ T cells and by enhancing the immunosensitivity of myeloma cells to γδ T cells. Mevastatin, a specific inhibitor of hydroxy-methylglutaryl-CoA reductase, completely abrogated this antimyeloma activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Massaia M, Borrione P, Battaglio S, Mariani S, Beggiato E, Napoli P et al. Idiotype vaccination in human myeloma: generation of tumor-specific immune responses after high-dose chemotherapy. Blood 1999; 94: 673–683.

    CAS  PubMed  Google Scholar 

  2. Coscia M, Mariani S, Battaglio S, Di Bello C, Fiore F, Foglietta M et al. Long-term follow-up of idiotype vaccination in human myeloma as a maintenance therapy after high-dose chemotherapy. Leukemia 2004; 18: 139–145.

    Article  CAS  PubMed  Google Scholar 

  3. Reichardt VL, Okada CY, Liso A, Benike CJ, Stockerl-Goldstein KE, Engleman EG et al. Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma: a feasibility study. Blood 1999; 93: 2411–2419.

    CAS  PubMed  Google Scholar 

  4. Wen YJ, Min R, Tricot G, Barlogie B, Yi Q . Tumor lysate-specific cytotoxic T lymphocytes in multiple myeloma: promising effector cells for immunotherapy. Blood 2002; 99: 3280–3285.

    Article  CAS  PubMed  Google Scholar 

  5. Li Y, Bendandi M, Deng Y, Dunbar C, Munshi N, Jagannath S et al. Tumor-specific recognition of human myeloma cells by idiotype-induced CD8(+) T cells. Blood 2000; 96: 2828–2833.

    CAS  PubMed  Google Scholar 

  6. Wen YJ, Barlogie B, Yi Q . Idiotype-specific cytotoxic T lymphocytes in multiple myeloma: evidence for their capacity to lyse autologous primary tumor cells. Blood 2001; 97: 1750–1755.

    Article  CAS  PubMed  Google Scholar 

  7. Massaia M, Borrione P, Attisano C, Barral P, Beggiato E, Montacchini L et al. Dysregulated Fas and bcl-2 expression leading to enhanced apoptosis in T cells of multiple myeloma patients. Blood 1995; 85: 3679–3687.

    CAS  PubMed  Google Scholar 

  8. Bianchi A, Mariani S, Beggiato E, Borrione P, Peola S, Boccadoro M et al. Distribution of T-cell signalling molecules in human myeloma. Br J Haematol 1997; 97: 815–820.

    Article  CAS  PubMed  Google Scholar 

  9. Mariani S, Coscia M, Even J, Peola S, Foglietta M, Boccadoro M et al. Severe and long-lasting disruption of T-cell receptor diversity in human myeloma after high-dose chemotherapy and autologous peripheral blood progenitor cell infusion. Br J Haematol 2001; 113: 1051–1059.

    Article  CAS  PubMed  Google Scholar 

  10. Brown RD, Pope B, Murray A, Esdale W, Sze DM, Gibson J et al. Dendritic cells from patients with myeloma are numerically normal but functionally defective as they fail to up-regulate CD80 (B7-1) expression after huCD40LT stimulation because of inhibition by transforming growth factor-beta1 and interleukin-10. Blood 2001; 98: 2992–2998.

    Article  CAS  PubMed  Google Scholar 

  11. Ratta M, Fagnoni F, Curti A, Vescovini R, Sansoni P, Oliviero B et al. Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood 2002; 100: 230–237.

    Article  CAS  PubMed  Google Scholar 

  12. Smyth MJ, Godfrey DI, Trapani JA . A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2001; 2: 293–299.

    Article  CAS  PubMed  Google Scholar 

  13. Kelly JM, Darcy PK, Markby JL, Godfrey DI, Takeda K, Yagita H et al. Induction of tumor-specific T cell memory by NK cell-mediated tumor rejection. Nat Immunol 2002; 3: 83–90.

    Article  CAS  PubMed  Google Scholar 

  14. Parker CM, Groh V, Band H, Porcelli SA, Morita C, Fabbi M et al. Evidence for extrathymic changes in the T cell receptor gamma/delta repertoire. J Exp Med 1990; 171: 1597–1612.

    Article  CAS  PubMed  Google Scholar 

  15. Tanaka Y, Morita CT, Tanaka Y, Nieves E, Brenner MB, Bloom BR . Natural and synthetic non-peptide antigens recognized by human gamma delta T cells. Nature 1995; 375: 155–158.

    Article  CAS  PubMed  Google Scholar 

  16. Bukowski JF, Morita CT, Brenner MB . Human gamma delta T cells recognize alkylamines derived from microbes, edible plants, and tea: implications for innate immunity. Immunity 1999; 11: 57–65.

    Article  CAS  PubMed  Google Scholar 

  17. Davodeau F, Peyrat MA, Hallet MM, Gaschet J, Houde I, Vivien R et al. Close correlation between Daudi and mycobacterial antigen recognition by human gamma delta T cells and expression of V9JPC1 gamma/V2DJC delta-encoded T cell receptors. J Immunol 1993; 151: 1214–1223.

    CAS  PubMed  Google Scholar 

  18. Selin LK, Stewart S, Shen C, Mao HQ, Wilkins JA . Reactivity of gamma delta T cells induced by the tumour cell line RPMI 8226: functional heterogeneity of clonal populations and role of GroEL heat shock proteins. Scand J Immunol 1992; 36: 107–117.

    Article  CAS  PubMed  Google Scholar 

  19. Kunzmann V, Bauer E, Feurle J, Weissinger F, Tony HP, Wilhelm M . Stimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 2000; 96: 384–392.

    CAS  PubMed  Google Scholar 

  20. Das H, Wang L, Kamath A, Bukowski JF . Vgamma2Vdelta2 T-cell receptor-mediated recognition of aminobisphosphonates. Blood 2001; 98: 1616–1618.

    Article  CAS  PubMed  Google Scholar 

  21. Wilhelm M, Kunzmann V, Eckstein S, Reimer P, Weissinger F, Ruediger T et al. Gammadelta T cells for immune therapy of patients with lymphoid malignancies. Blood 2003; 102: 200–206.

    Article  CAS  PubMed  Google Scholar 

  22. Thompson K, Rogers M . Statins prevent bisphosphonate-induced g,d-T-cell proliferation and activation in vitro. J Bone Miner Res 2004; 19: 278–288.

    Article  CAS  PubMed  Google Scholar 

  23. Jedema I, van der Werff NM, Barge RM, Willemze R, Falkenburg JH . New CFSE-based assay to determine susceptibility to lysis by cytotoxic T cells of leukemic precursor cells within a heterogeneous target cell population. Blood 2004; 103: 2677–2682.

    Article  CAS  PubMed  Google Scholar 

  24. Miyagawa F, Tanaka Y, Yamashita S, Minato N . Essential requirement of antigen presentation by monocyte lineage cells for the activation of primary human gamma delta T cells by aminobisphosphonate antigen. J Immunol 2001; 166: 5508–5514.

    Article  CAS  PubMed  Google Scholar 

  25. Dieli F, Poccia F, Lipp M, Sireci G, Caccamo N, Di Sano C et al. Differentiation of effector/memory Vδ2 T cells and migratory routes in lymph nodes or inflammatory sites. J Exp Med 2003; 198: 391–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Angelini DF, Borsellino G, Poupot M, Diamantini A, Poupot R, Bernardi G et al. FcRIII discriminates between 2 subsets of Vγ9Vδ2 effector cells with different responses and activation pathways. Blood 2004; 104: 1801–1807.

    Article  CAS  PubMed  Google Scholar 

  27. Alter G, Malenfant JM, Delabre RM, Burgett NC, Yu XG, Lichterfeld M et al. Increased natural killer cell activity in viremic HIV-1 infection. J Immunol 2004; 173: 5305–5311.

    Article  CAS  PubMed  Google Scholar 

  28. Rubio V, Stuge TB, Singh N, Betts MR, Weber JS, Roederer M et al. Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nat Med 2003; 9: 1377–1382.

    Article  CAS  PubMed  Google Scholar 

  29. Wang L, Kamath A, Das H, Li L, Bukowski JF . Antibacterial effect of human V gamma 2V delta 2 T cells in vivo. J Clin Invest 2001; 108: 1349–1357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Takano M, Nishimura H, Kimura Y, Mokuno Y, Washizu J, Itohara S et al. Protective roles of gamma delta T cells and interleukin-15 in Escherichia coli infection in mice. Infect Immun 1998; 66: 3270–3278.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kabelitz D, Wesch D, Pitters E, Zoller M . Characterization of tumor reactivity of human Vgamma9Vdelta2 gammadelta T cells in vitro and in SCID mice in vivo. J Immunol 2004; 173: 6767–6776.

    Article  CAS  PubMed  Google Scholar 

  32. Kato Y, Tanaka Y, Miyagawa F, Yamashita S, Minato N . Targeting of tumor cells for human gammadelta T cells by nonpeptide antigens. J Immunol 2001; 167: 5092–5098.

    Article  CAS  PubMed  Google Scholar 

  33. Gober HJ, Kistowska M, Angman L, Jeno P, Mori L, De Libero G . Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 2003; 197: 163–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dunford JE, Thompson K, Coxon FP, Luckman SP, Hahn FM, Poulter CD et al. Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J Pharmacol Exp Ther 2001; 296: 235–242.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor John Iliffe for editorial assistance, and Dr Patrizia Falco, Dr Alessandra Bertola, and Dr Federica Cavallo for providing clinical samples. This work was supported by Compagnia San Paolo di Torino (Special Project Oncology), MIUR (COFIN and FIRB, Roma, Italy), AIRC (Milano, Italy), Ministero della Salute (Ricerca Sanitaria Finalizzata), and Novartis Pharma. Fellowship recipients are: S.P. (Comitato Gigi Ghirotti, Torino, Italy), M.M. (Associazione Italiana Amici José Carreras, Torino, Italy), and B.N. (CeRMS-FIRMS, Torino, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Massaia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mariani, S., Muraro, M., Pantaleoni, F. et al. Effector γδ T cells and tumor cells as immune targets of zoledronic acid in multiple myeloma. Leukemia 19, 664–670 (2005). https://doi.org/10.1038/sj.leu.2403693

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403693

Keywords

This article is cited by

Search

Quick links