Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Childhood AML

CEBPα mutations in childhood acute myeloid leukemia

Abstract

CEBPα mutations have been described in adult acute myeloid leukemia (AML) and conferred a favorable prognosis. However, CEBPα mutation has not been reported in children. We investigated 117 children with de novo AML using DNA PCR assay followed by sequencing for each PCR product. CEBPα mutations were detected in seven patients, four had FAB M2, two M1 and one M4. CEBPα mutations only occurred in patients with intermediate cytogenetics and not in 56 children with AML1-ETO, CBFβ-MYH11, PML-RARα or MLL rearrangements. Five patients had mutations occurred in both N-terminal part and basic-leucine zipper (bZIP) domain, one had an N-terminal frameshift mutation and the remaining one had an inframe insertion in the bZIP domain. Cloning analysis on five samples carrying more than one mutations demonstrated one homozygous combined mutations and four heterozygous biallelic mutations. Four of seven CEBPα mutation(+) patients had cooperating mutations with FLT3-ITD or N-ras mutations compared to 27 in 109 CEBPα mutation(−) patients. Our results showed that CEBPα mutations occurred in 6% of childhood AML and most exhibited combined mutations in both N-terminal part and bZIP domain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Johnson PF, Landschulz WH, Graves BJ, McKnight SL . Identification of a rat liver nuclear protein that binds to the enhancer core element of three animal viruses. Genes Dev 1987; 1: 133–146.

    Article  CAS  PubMed  Google Scholar 

  2. Landschulz WH, Johnson PF, Adashi EY, Graves BJ, McKnight SL . Isolation of a recombinant copy of the gene encoding C/EBP. Genes Dev 1988; 2: 786–800.

    Article  CAS  PubMed  Google Scholar 

  3. Scott LM, Civin CI, Rorth P, Friedman AD . A novel temporal expression pattern of three C/EBP family members in differentiating myelomonocytic cells. Blood 1992; 80: 1725–1735.

    CAS  PubMed  Google Scholar 

  4. Zhang DE, Zhang P, Wang ND, Hetherington CJ, Darlington GJ, Tenen DG . Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice. Proc Natl Acad Sci USA 1997; 94: 569–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pabst T, Mueller BU, Zhang P, Radomska HS, Narravula S, Schnittger S et al. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet 2001; 27: 263–270.

    Article  CAS  PubMed  Google Scholar 

  6. Gombart AF, Hofmann WK, Kawano S, Takeuchi S, Krug U, Kwok SH et al. Mutations in the gene encoding the transcription factor CCAAT/enhancer binding protein alpha in myelodysplastic syndromes and acute myeloid leukemias. Blood 2002; 99: 1332–1340.

    Article  CAS  PubMed  Google Scholar 

  7. Preudhomme C, Sagot C, Boissel N, Cayuela JM, Tigaud I, de Botton S et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association. Blood 2002; 100: 2717–2723.

    Article  CAS  PubMed  Google Scholar 

  8. Fröhling S, Schlenk RF, Stolze I, Bihlmayr J, Benner A, Kreitmeier S et al. CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations. J Clin Oncol 2004; 22: 624–633.

    Article  PubMed  Google Scholar 

  9. van Waalwijk van Doorn-Khosrovani SB, Erpelinck C, Meijer J, van Oosterhoud S, van Putten WL, Valk PJ et al. Biallelic mutations in the CEBPA gene and low CEBPA expression levels as prognostic markers in intermediate-risk AML. Hematol J 2003; 4: 31–40.

    Article  CAS  Google Scholar 

  10. Kaeferstein A, Krug U, Tiesmeier J, Aivado M, Faulhaber M, Stadler M et al. The emergence of a C/EBPalpha mutation in the clonal evolution of MDS towards secondary AML. Leukemia 2003; 17: 343–349.

    Article  CAS  PubMed  Google Scholar 

  11. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French–American–British Cooperative Group. Ann Intern Med 1985; 103: 620–625.

    Article  CAS  PubMed  Google Scholar 

  12. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Criteria for the diagnosis of acute leukemia of megakaryocyte lineage (M7). A report of the French–American–British Cooperative Group. Ann Intern Med 1985; 103: 460–462.

    Article  CAS  PubMed  Google Scholar 

  13. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposal for the recognition of minimally differentiated acute myeloid leukaemia (AML-M0). Br J Haematol 1991; 78: 325–329.

    Article  CAS  PubMed  Google Scholar 

  14. Liang D-C, Shih L-Y, Yang C-P, Hung I-J, Chen S-H, Liu H-C . Molecular analysis of fusion transcripts in childhood acute myeloid leukemia in Taiwan. Med Pediatr Oncol 2001; 37: 555–556.

    Article  CAS  PubMed  Google Scholar 

  15. Vardiman JW, Harris NL, Brunning RD . The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002; 100: 2292–2302.

    Article  CAS  PubMed  Google Scholar 

  16. Caligiuri MA, Strout MP, Schichman SA, Mrozek K, Arthur DC, Herzig GP et al. Partial tandem duplication of ALL1 as a recurrent molecular defect in acute myeloid leukemia with trisomy 11. Cancer Res 1996; 56: 1418–1425.

    CAS  PubMed  Google Scholar 

  17. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood 1998; 92: 2322–2333.

    CAS  PubMed  Google Scholar 

  18. Liang D-C, Shih L-Y, Hung I-J, Yang C-P, Chen S-H, Jaing T-H et al. Clinical relevance of internal tandem duplication of the FLT3 gene in childhood acute myeloid leukemia. Cancer 2002; 94: 3292–3298.

    Article  CAS  PubMed  Google Scholar 

  19. Sanz MA, Martin G, Rayon C, Esteve J, Gonzalez M, Diaz-Mediavilla J et al. A modified AIDA protocol with anthracycline-based consolidation results in high antileukemic efficacy and reduced toxicity in newly diagnosed PML/RARalpha-positive acute promyelocytic leukemia. PETHEMA group. Blood 1999; 94: 3015–3021.

    CAS  PubMed  Google Scholar 

  20. Hann IM, Stevens RF, Goldstone AH, Rees JK, Wheatley K, Gray RG et al. Randomized comparison of DAT versus ADE as induction chemotherapy in children and younger adults with acute myeloid leukemia. Results of the Medical Research Council's 10th AML trial (MRC AML10). Adult and Childhood Leukaemia Working Parties of the Medical Research Council. Blood 1997; 89: 2311–2318.

    CAS  PubMed  Google Scholar 

  21. Abbott BL, Rubnitz JE, Tong X, Srivastava DK, Pui CH, Ribeiro RC et al. Clinical significance of central nervous system involvement at diagnosis of pediatric acute myeloid leukemia: a single institution's experience. Leukemia 2003; 17: 2090–2096.

    Article  CAS  PubMed  Google Scholar 

  22. Lehrnbecher T, Varwig D, Kaiser J, Reinhardt D, Klingebiel T, Creutzig U . Infectious complications in pediatric acute myeloid leukemia: analysis of the prospective multi-institutional clinical trial AML-BFM 93. Leukemia 2004; 18: 72–77.

    Article  CAS  PubMed  Google Scholar 

  23. Shih L-Y, Huang C-F, Wu J-H, Lin T-L, Dunn P, Wang P-N et al. Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood 2002; 100: 2387–2392.

    Article  CAS  PubMed  Google Scholar 

  24. Liang D-C, Shih L-Y, Hung I-J, Yang C-P, Chen S-H, Jaing T-H et al. FLT3-TKD mutation in childhood acute myeloid leukemia. Leukemia 2003; 17: 883–886.

    Article  CAS  PubMed  Google Scholar 

  25. Shih L-Y, Huang C-F, Wang P-N, Wu J-H, Lin T-L, Dunn P et al. Acquisition of FLT3 or N-ras mutations is frequently associated with progression of myelodysplastic syndrome to acute myeloid leukemia. Leukemia 2004; 18: 466–475.

    Article  CAS  PubMed  Google Scholar 

  26. Fu JF, Liang DC, Yang CP, Hsu JJ, Shih LY . Molecular Analysis of t(X;11)(q24;q23) in an Infant with AML-M4. Genes Chromosomes Cancer 2003; 38: 253–259.

    Article  CAS  PubMed  Google Scholar 

  27. Tiesmeier J, Czwalinna A, Muller-Tidow C, Krauter J, Serve H, Heil G et al. Evidence for allelic evolution of C/EBPalpha mutations in acute myeloid leukaemia. Br J Haematol 2003; 123: 413–419.

    Article  CAS  PubMed  Google Scholar 

  28. Martinez-Climent JA, Lane NJ, Rubin CM, Morgan E, Johnstone HS, Mick R et al. Clinical and prognostic significance of chromosomal abnormalities in childhood acute myeloid leukemia de novo. Leukemia 1995; 9: 95–101.

    CAS  PubMed  Google Scholar 

  29. Schlenk RF, Benner A, Hartmann F, del Valle F, Weber C, Pralle H et al. AML Study Group Ulm (AMLSG ULM). Risk-adapted postremission therapy in acute myeloid leukemia: results of the German multicenter AML HD93 treatment trial. Leukemia 2003; 17: 1521–1528.

    Article  CAS  PubMed  Google Scholar 

  30. Matsuo T, Kuriyama K, Miyazaki Y, Yoshida S, Tomonaga M, Emi N et al. The percentage of myeloperoxidase-positive blast cells is a strong independent prognostic factor in acute myeloid leukemia, even in the patients with normal karyotype. Leukemia 2003; 17: 1538–1543.

    Article  CAS  PubMed  Google Scholar 

  31. Roche J, Zeng C, Baron A, Gadgil S, Gemmill RM, Tigaud I et al. Hox expression in AML identifies a distinct subset of patients with intermediate cytogenetics. Leukemia 2004; 18: 1059–1063.

    Article  CAS  PubMed  Google Scholar 

  32. Zwaan CM, Meshinchi S, Radich JP, Veerman AJ, Huismans DR, Munske L et al. FLT3 internal tandem duplication in 234 children with acute myeloid leukemia: prognostic significance and relation to cellular drug resistance. Blood 2003; 102: 2387–2394.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by Grant NSC 92-2314-B-182-026 from the National Science Council, Taiwan, and Grant MMH-E-93009 from Mackay Memorial Hospital, Taipei, Taiwan. D-C Liang, I-J Hung, C-P Yang, H-C Liu, T-H Jaing and L-Y Wang are members of the Taiwan Pediatoric Oncology Group, Childhood Cancer Foundation, ROC (CCF) and thank CCF for the continuous support to nationwide clinical trials. We thank Ms Meng-Chu Chou and Ms Yu-Shu Shih for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L -Y Shih.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, DC., Shih, LY., Huang, CF. et al. CEBPα mutations in childhood acute myeloid leukemia. Leukemia 19, 410–414 (2005). https://doi.org/10.1038/sj.leu.2403608

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403608

Keywords

This article is cited by

Search

Quick links