Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Published:

New insight into the molecular mechanisms of MLL-associated leukemia

Abstract

Rearrangements of the MLL gene (ALL1, HRX, and Hrtx) located at chromosome band 11q23 are commonly involved in adult and pediatric cases of primary acute leukemias and also found in cases of therapy-related secondary leukemias. Studies on mouse models of MLL translocation and cell lines containing MLL rearrangements showed that the MLL gene linked chromosomal rearrangements to cellular differentiation and tumor tropism. Moreover, recent structural/functional studies on MLL and aberrant MLL proteins provided new clues and suggested that different mechanisms might be included in leukemogenesis by MLL rearrangements. The connection between these different mechanisms will help us understand globally how aberrant MLL oncogenes affect the normal cellular processes at molecular level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Cox MC, Panetta P, Lo-Coco F, Del Poeta G, Venditti A, Maurillo L et al. Chromosomal aberration of the 11q23 locus in acute leukemia and frequency of MLL gene translocation: results in 378 adult patients. Am J Clin Pathol 2004; 122: 298–306.

    Article  CAS  PubMed  Google Scholar 

  2. del Mar Bellido M, Nomdedeu JF . Adult de novo acute myeloid leukemias with MLL rearrangements. Leuk Res 1999; 23: 585–588.

    Article  CAS  PubMed  Google Scholar 

  3. Stock W, Thirman MJ, Dodge RK, Rowley JD, Diaz MO, Wurster-Hill D et al. Detection of MLL gene rearrangements in adult acute lymphoblastic leukemia. A Cancer and Leukemia Group B Study. Leukemia 1994; 8: 1918–1922.

    CAS  PubMed  Google Scholar 

  4. Sorensen PH, Chen CS, Smith FO, Arthur DC, Domer PH, Bernstein ID et al. Molecular rearrangements of the MLL gene are present in most cases of infant acute myeloid leukemia and are strongly correlated with monocytic or myelomonocytic phenotypes. J Clin Invest 1994; 93: 429–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Martinez-Climent JA, Thirman MJ, Espinosa III R, Le Beau MM, Rowley JD . Detection of 11q23/MLL rearrangements in infant leukemias with fluorescence in situ hybridization and molecular analysis. Leukemia 1995; 9: 1299–1304.

    CAS  PubMed  Google Scholar 

  6. Satake N, Maseki N, Nishiyama M, Kobayashi H, Sakurai M, Inaba H et al. Chromosome abnormalities and MLL rearrangements in acute myeloid leukemia of infants. Leukemia 1999; 13: 1013–1017.

    Article  CAS  PubMed  Google Scholar 

  7. Andersen MK, Christiansen DH, Jensen BA, Ernst P, Hauge G, Pedersen-Bjergaard J . Therapy-related acute lymphoblastic leukaemia with MLL rearrangements following DNA topoisomerase II inhibitors, an increasing problem: report on two new cases and review of the literature since 1992. Br J Haematol 2001; 114: 539–543.

    Article  CAS  PubMed  Google Scholar 

  8. Super HJ, McCabe NR, Thirman MJ, Larson RA, Le Beau MM, Pedersen-Bjergaard J et al. Rearrangements of the MLL gene in therapy-related acute myeloid leukemia in patients previously treated with agents targeting DNA-topoisomerase II. Blood 1993; 82: 3705–3711.

    CAS  PubMed  Google Scholar 

  9. Cimino G, Rapanotti MC, Sprovieri T, Elia L . ALL1 gene alterations in acute leukemia: biological and clinical aspects. Haematologica 1998; 83: 350–357.

    CAS  PubMed  Google Scholar 

  10. Dimartino JF, Cleary ML . Mll rearrangements in haematological malignancies: lessons from clinical and biological studies. Br J Haematol 1999; 106: 614–626.

    Article  CAS  PubMed  Google Scholar 

  11. Ziemin-van der Poel S, McCabe NR, Gill HJ, Espinosa III R, Patel Y, Harden A et al. Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc Natl Acad Sci USA 1991; 88: 10735–10739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gu Y, Alder H, Nakamura T, Schichman SA, Prasad R, Canaani O et al. Sequence analysis of the breakpoint cluster region in the ALL-1 gene involved in acute leukemia. Cancer Res 1994; 54: 2326–2330.

    Google Scholar 

  13. Huret JL . Atlas Genet Cytogenet Oncol Haematol 2001. http://www.infobiogen.fr/services/chromacancer/Anomalies/11q23ID1030.html.

  14. Caligiuri MA, Strout MP, Lawrence D, Arthur DC, Baer MR, Yu F et al. Rearrangement of ALL1 (MLL) in acute myeloid leukemia with normal cytogenetics. Cancer Res 1998; 58: 55–59.

    CAS  PubMed  Google Scholar 

  15. Caligiuri MA, Strout MP, Schichman SA, Mrózek K, Arthur DC, Herzig GP et al. Partial tandem duplication of ALL1 as a recurrent molecular defect in acute myeloid leukemia with trisomy 11. Cancer Res 1996; 56: 1418–1425.

    CAS  PubMed  Google Scholar 

  16. Schichman SA, Caligiuri MA, Gu Y, Strout MP, Canaani E, Bloomfield CD et al. ALL-1 partial duplication in acute leukemia. Proc Natl Acad Sci USA 1994; 91: 6236–6239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Andersen MK, Christiansen DH, Kirchhoff M, Pedersen-Bjergaard J . Duplication or amplification of chromosome band 11q23, including the unrearranged MLL gene, is a recurrent abnormality in therapy-related MDS and AML, and is closely related to mutation of the TP53 gene and to previous therapy with alkylating agents. Genes Chromosomes Cancer 2001; 31: 33–41.

    Article  CAS  PubMed  Google Scholar 

  18. Poppe B, Vandesompele J, Schoch C, Lindvall C, Mrozek K, Bloomfield CD et al. Expression analyses identify MLL as a prominent target of 11q23 amplification and support an etiologic role for MLL gain of function in myeloid malignancies. Blood 2004; 103: 229–235.

    Article  CAS  PubMed  Google Scholar 

  19. Zatkova A, Ullmann R, Rouillard JM, Lamb BJ, Kuick R, Hanash SM et al. Distinct sequences on 11q13.5 and 11q23–24 are frequently coamplified with MLL in complexly organized 11q amplicons in AML/MDS patients. Genes Chromosomes Cancer 2004; 39: 263–276.

    Article  CAS  PubMed  Google Scholar 

  20. Tkachuk DC, Kohler S, Cleary ML . Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 1992; 71: 691–700.

    Article  CAS  PubMed  Google Scholar 

  21. Yu BD, Hess JL, Horning SE, Brown GA, Korsmeyer SJ . Altered Hox expression and segmental identity in Mll-mutant mice. Nature 1995; 378: 505–508.

    Article  CAS  PubMed  Google Scholar 

  22. Yu BD, Hanson RD, Hess JL, Horning SE, Korsmeyer SJ . MLL, a mammalian trithorax-group gene, functions as a transcriptional maintenance factor in morphogenesis. Proc Natl Acad Sci USA 1998; 95: 10632–10636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ayton P, Sneddon SF, Palmer DB, Rosewell IR, Owen MJ, Young B et al. Truncation of the Mll gene in exon 5 by gene targeting leads to early preimplantation lethality of homozygous embryos. Genesis 2001; 30: 201–212.

    Article  CAS  PubMed  Google Scholar 

  24. Hess JL, Yu BD, Li B, Hanson R, Korsmeyer SJ . Defects in yolk sac hematopoiesis in Mll-null embryos. Blood 1997; 90: 1799–1806.

    CAS  PubMed  Google Scholar 

  25. Fidanza V, Melotti P, Yano T, Nakamura T, Bradley A, Canaani E et al. Double knockout of the ALL-1 gene blocks hematopoietic differentiation in vitro. Cancer Res 1996; 56: 1179–1183.

    CAS  PubMed  Google Scholar 

  26. Yagi H, Deguchi K, Aono A, Tani Y, Kishimoto T, Komori T . Growth disturbance in fetal liver hematopoiesis of Mll-mutant mice. Blood 1998; 92: 108–117.

    CAS  PubMed  Google Scholar 

  27. Ernst P, Fisher JK, Avery W, Wade S, Foy D, Korsmeyer SJ . Definitive hematopoiesis requires the mixed-lineage leukemia gene. Dev Cell 2004; 6: 437–443.

    Article  CAS  PubMed  Google Scholar 

  28. Magli MC, Largman C, Lawrence HJ . Effects of HOX homeobox genes in blood cell differentiation. J Cell Physiol 1997; 173: 168–177.

    Article  CAS  PubMed  Google Scholar 

  29. Zeleznik-Le NJ, Harden AM, Rowley JD . 11q23 translocations split the ‘AT-hook’ cruciform DNA-binding region and the transcriptional repression domain from the activation domain of the mixed-lineage leukemia (MLL) gene. Proc Natl Acad Sci USA 1994; 91: 10610–10614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cross SH, Meehan RR, Nan X, Bird A . A component of the transcriptional repressor MeCP1 shares a motif with DNA methyltransferase and HRX proteins. Nat Genet 1997; 16: 256–259.

    Article  CAS  PubMed  Google Scholar 

  31. Birke M, Schreiner S, Garcia-Cuellar MP, Mahr K, Titgemeyer F, Slany RK . The MT domain of the proto-oncoprotein MLL binds to CpG-containing DNA and discriminates against methylation. Nucleic Acids Res 2002; 30: 958–965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xia ZB, Anderson M, Diaz MO, Zeleznik-Le NJ . MLL repression domain interacts with histone deacetylases, the polycomb group proteins HPC2 and BMI-1, and the corepressor C-terminal-binding protein. Proc Natl Acad Sci USA 2003; 100: 8342–8347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aasland R, Gibson TJ, Stewart AF . The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem Sci 1995; 20: 56–59.

    Article  CAS  PubMed  Google Scholar 

  34. Fair K, Anderson M, Bulanova E, Mi H, Tropschug M, Diaz MO . Protein interactions of the MLL PHD fingers modulate MLL target gene regulation in human cells. Mol Cell Biol 2001; 21: 3589–3597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ernst P, Wang J, Huang M, Goodman RH, Korsmeyer SJ . MLL and CREB bind cooperatively to the nuclear coactivator CREB-binding protein. Mol Cell Biol 2001; 21: 2249–2258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 2002; 10: 1107–1117.

    Article  CAS  PubMed  Google Scholar 

  37. Nakamura T, Mori T, Tada S, Krajewski W, Rozovskaia T, Wassell R et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 2002; 10: 1119–1128.

    Article  CAS  PubMed  Google Scholar 

  38. Rozovskaia T, Rozenblatt-Rosen O, Sedkov Y, Burakov D, Yano T, Nakamura T et al. Self-association of the SET domains of human ALL-1 and of Drosophila TRITHORAX and ASH1 proteins. Oncogene 2000; 19: 351–357.

    Article  CAS  PubMed  Google Scholar 

  39. Yano T, Nakamura T, Blechman J, Sorio C, Dang CV, Geiger B et al. Nuclear punctate distribution of ALL-1 is conferred by distinct elements at the N terminus of the protein. Proc Natl Acad Sci USA 1997; 94: 7286–7291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hsieh JJ, Cheng EH, Korsmeyer SJ . Taspase1: a threonine aspartase required for cleavage of MLL and proper HOX gene expression. Cell 2003; 115: 293–303.

    Article  CAS  PubMed  Google Scholar 

  41. Yokoyama A, Kitabayashi I, Ayton PM, Cleary ML, Ohki M . Leukemia proto-oncoprotein MLL is proteolytically processed into 2 fragments with opposite transcriptional properties. Blood 2002; 100: 3710–3718.

    Article  CAS  PubMed  Google Scholar 

  42. Hsieh JJ, Ernst P, Erdjument-Bromage H, Tempst P, Korsmeyer SJ . Proteolytic cleavage of MLL generates a complex of N- and C-terminal fragments that confers protein stability and subnuclear localization. Mol Cell Biol 2003; 23: 186–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Caslini C, Alarcon AS, Hess JL, Tanaka R, Murti KG, Biondi A . The amino terminus targets the mixed lineage leukemia (MLL) protein to the nucleolus, nuclear matrix and mitotic chromosomal scaffolds. Leukemia 2000; 14: 1898–1908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41–47.

    Article  CAS  PubMed  Google Scholar 

  45. Schnittger S, Kinkelin U, Schoch C, Heinecke A, Haase D, Haferlach T et al. Screening for MLL tandem duplication in 387 unselected patients with AML identify a prognostically unfavorable subset of AML. Leukemia 2000; 14: 796–804.

    Article  CAS  PubMed  Google Scholar 

  46. Bernard OA, Romana SP, Schichman SA, Mauchauffe M, Jonveaux P, Berger R . Partial duplication of HRX in acute leukemia with trisomy 11. Leukemia 1995; 9: 1487–1490.

    CAS  PubMed  Google Scholar 

  47. Martin ME, Milne TA, Bloyer S, Galoian K, Shen W, Gibbs D et al. Dimerization of MLL fusion proteins immortalizes hematopoietic cells. Cancer Cell 2003; 4: 197–207.

    Article  CAS  PubMed  Google Scholar 

  48. Whitman SP, Strout MP, Marcucci G, Freud AG, Culley LL, Zeleznik-Le NJ et al. The partial nontandem duplication of the MLL (ALL1) gene is a novel rearrangement that generates three distinct fusion transcripts in B-cell acute lymphoblastic leukemia. Cancer Res 2001; 61: 59–63.

    CAS  PubMed  Google Scholar 

  49. Corral J, Lavenir I, Impey H, Warren AJ, Forster A, Larson TA et al. An Mll-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell 1996; 85: 853–861.

    Article  CAS  PubMed  Google Scholar 

  50. Lavau C, Szilvassy SJ, Slany R, Cleary ML . Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J 1997; 16: 4226–4237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dobson CL, Warren AJ, Pannell R, Forster A, Lavenir I, Corral J et al. The Mll-AF9 gene fusion in mice controls myeloproliferation and specifies acute myeloid leukaemogenesis. EMBO J 1999; 18: 3564–3574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dobson CL, Warren AJ, Pannell R, Forster A, Rabbitts TH . Tumorigenesis in mice with a fusion of the leukaemia oncogene Mll and the bacterial lacZ gene. EMBO J 2000; 19: 843–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lavau C, Du C, Thirman M, Zeleznik-Le N . Chromatin-related properties of CBP fused to MLL generate a myelodysplastic-like syndrome that evolves into myeloid leukemia. EMBO J 2000; 19: 4655–4664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Slany RK, Lavau C, Cleary ML . The oncogenic capacity of HRX-ENL requires the transcriptional transactivation activity of ENL and the DNA binding motifs of HRX. Mol Cell Biol 1998; 18: 122–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Luo RT, Lavau C, Du C, Simone F, Polak PE, Kawamata S et al. The elongation domain of ELL is dispensable but its ELL-associated factor 1 interaction domain is essential for MLL-ELL-induced leukemogenesis. Mol Cell Biol 2001; 21: 5678–5687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Anderson MJ, Viars CS, Czekay S, Cavenee WK, Arden KC . Cloning and characterization of three human forkhead genes that comprise an FKHR-like gene subfamily. Genomics 1998; 47: 187–199.

    Article  CAS  PubMed  Google Scholar 

  57. Borkhardt A, Repp R, Haas OA, Leis T, Harbott J, Kreuder J et al. Cloning and characterization of AFX, the gene that fuses to MLL in acute leukemias with a t(X;11)(q13;q23). Oncogene 1997; 14: 195–202.

    Article  CAS  PubMed  Google Scholar 

  58. Burgering BM, Kops GJ . Cell cycle and death control: long live Forkheads. Trends Biochem Sci 2002; 27: 352–360.

    Article  CAS  PubMed  Google Scholar 

  59. So CW, Cleary ML . Common mechanism for oncogenic activation of MLL by forkhead family proteins. Blood 2003; 101: 633–639.

    Article  CAS  PubMed  Google Scholar 

  60. DiMartino JF, Ayton PM, Chen EH, Naftzger CC, Young BD, Cleary ML . The AF10 leucine zipper is required for leukemic transformation of myeloid progenitors by MLL-AF10. Blood 2002; 99: 3780–3785.

    Article  CAS  PubMed  Google Scholar 

  61. Simone F, Polak PE, Kaberlein JJ, Luo RT, Levitan DA, Thirman MJ . EAF1, a novel ELL-associated factor that is delocalized by expression of the MLL-ELL fusion protein. Blood 2001; 98: 201–209.

    Article  CAS  PubMed  Google Scholar 

  62. Ida K, Kitabayashi I, Taki T, Taniwaki M, Noro K, Yamamoto M et al. Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11;22)(q23;q13). Blood 1997; 90: 4699–4704.

    CAS  PubMed  Google Scholar 

  63. Sobulo OM, Borrow J, Tomek R, Reshmi S, Harden A, Schlegelberger B et al. MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16)(q23;p13.3). Proc Natl Acad Sci USA 1997; 94: 8732–8737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zeisig BB, Schreiner S, Garcia-Cuellar MP, Slany RK . Transcriptional activation is a key function encoded by MLL fusion partners. Leukemia 2003; 17: 359–365.

    Article  CAS  PubMed  Google Scholar 

  65. Chaplin T, Bernard O, Beverloo HB, Saha V, Hagemeijer A, Berger R et al. The t (10; 11) translocation in acute myeloid leukemia (M5) consistently fuses the leucine zipper motif of AF10 onto the HRX gene. Blood 1995; 86: 2073–2076.

    CAS  PubMed  Google Scholar 

  66. Sano K . Structure of AF3p21, a new member of mixed lineage leukemia (MLL) fusion partner proteins-implication for MLL-induced leukemogenesis. Leuk Lymphoma 2001; 42: 595–602.

    Article  CAS  PubMed  Google Scholar 

  67. Prasad R, Leshkowitz D, Gu Y, Alder H, Nakamura T, Saito H et al. Leucine-zipper dimerization motif encoded by the AF17 gene fused to ALL-1 (MLL) in acute leukemia. Proc Natl Acad Sci USA 1994; 91: 8107–8111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Linder B, Newman R, Jones LK, Debernardi S, Young BD, Freemont P et al. Biochemical analyses of the AF10 protein: the extended LAP/PHD-finger mediates oligomerisation. J Mol Biol 2000; 299: 369–378.

    Article  CAS  PubMed  Google Scholar 

  69. Pegram LD, Megonigal MD, Lange BJ, Nowell PC, Rowley JD, Rappaport EF et al. t(3;11) translocation in treatment-related acute myeloid leukemia fuses MLL with the GMPS (GUANOSINE 5′ MONOPHOSPHATE SYNTHETASE) gene. Blood 2000; 96: 4360–4362.

    CAS  PubMed  Google Scholar 

  70. Ono R, Taki T, Taketani T, Taniwaki M, Kobayashi H, Hayashi Y . LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23). Cancer Res 2002; 62: 4075–4780.

    CAS  PubMed  Google Scholar 

  71. Ono R, Taki T, Taketani T, Kawaguchi H, Taniwaki M, Okamura T et al. SEPTIN6, a human homologue to mouse Septin6, is fused to MLL in infant acute myeloid leukemia with complex chromosomal abnormalities involving 11q23 and Xq24. Cancer Res 2002; 62: 333–337.

    CAS  PubMed  Google Scholar 

  72. Liu H, Chen B, Xiong H, Huang QH, Zhang QH, Wang ZG et al. Functional contribution of EEN to leukemogenic transformation by MLL-EEN fusion protein. Oncogene 2004; 23: 3385–3394.

    Article  CAS  PubMed  Google Scholar 

  73. Jacobson RH, Zhang XJ, DuBose RF, Matthews BW . Three-dimensional structure of beta-galactosidase from E. coli. Nature 1994; 369: 761–766.

    Article  CAS  PubMed  Google Scholar 

  74. So CW, Lin M, Ayton PM, Chen EH, Cleary ML . Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. Cancer Cell 2003; 4: 99–110.

    Article  CAS  PubMed  Google Scholar 

  75. Eguchi M, Eguchi-Ishimae M, Greaves M . The small oligomerization domain of gephyrin converts MLL to an oncogene. Blood 2004; 103: 3876–3882.

    Article  CAS  PubMed  Google Scholar 

  76. Francis NJ, Kingston RE . Mechanisms of transcriptional memory. Nat Rev Mol Cell Biol 2001; 2: 409–421.

    Article  CAS  PubMed  Google Scholar 

  77. Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I et al. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 2004; 24: 5639–5649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Garcia-Cuellar MP, Zilles O, Schreiner SA, Birke M, Winkler TH, Slany RK . The ENL moiety of the childhood leukemia-associated MLL-ENL oncoprotein recruits human Polycomb 3. Oncogene 2001; 20: 411–419.

    Article  CAS  PubMed  Google Scholar 

  79. Nie Z, Yan Z, Chen EH, Sechi S, Ling C, Zhou S et al. Novel SWI/SNF chromatin-remodeling complexes contain a mixed-lineage leukemia chromosomal translocation partner. Mol Cell Biol 2003; 23: 2942–2952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Garcia-Cuellar MP, Schreiner SA, Birke M, Hamacher M, Fey GH, Slany RK . ENL, the MLL fusion partner in t(11;19), binds to the c-Abl interactor protein 1 (ABI1) that is fused to MLL in t(10;11). Oncogene 2000; 19: 1744–1751.

    Article  CAS  PubMed  Google Scholar 

  81. Debernardi S, Bassini A, Jones LK, Chaplin T, Linder B, de Bruijn DR et al. The MLL fusion partner AF10 binds GAS41, a protein that interacts with the human SWI/SNF complex. Blood 2002; 99: 275–281.

    Article  PubMed  Google Scholar 

  82. Yam JW, Jin DY, So CW, Chan LC . Identification and characterization of EBP, a novel EEN binding protein that inhibits Ras signaling and is recruited into the nucleus by the MLL-EEN fusion protein. Blood 2004; 103: 1445–1453.

    Article  CAS  PubMed  Google Scholar 

  83. So CW, So CK, Cheung N, Chew SL, Sham MH, Chan LC . The interaction between EEN and Abi-1, two MLL fusion partners, and synaptojanin and dynamin: implications for leukaemogenesis. Leukemia 2000; 14: 594–601.

    Article  CAS  PubMed  Google Scholar 

  84. Sano K, Hayakawa A, Piao JH, Kosaka Y, Nakamura H . Novel SH3 protein encoded by the AF3p21 gene is fused to the mixed lineage leukemia protein in a therapy-related leukemia with t(3;11) (p21;q23). Blood 2000; 95: 1066–1068.

    CAS  PubMed  Google Scholar 

  85. Lin YM, Ono K, Satoh S, Ishiguro H, Fujita M, Miwa N et al. Identification of AF17 as a downstream gene of the beta-catenin/T-cell factor pathway and its involvement in colorectal carcinogenesis. Cancer Res 2001; 61: 6345–6349.

    CAS  PubMed  Google Scholar 

  86. Burgering BM, Medema RH . Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty. J Leukocyte Biol 2003; 73: 689–701.

    Article  CAS  PubMed  Google Scholar 

  87. Kourlas PJ, Strout MP, Becknell B, Veronese ML, Croce CM, Theil KS et al. Identification of a gene at 11q23 encoding a guanine nucleotide exchange factor: evidence for its fusion with MLL in acute myeloid leukemia. Proc Natl Acad Sci USA 2000; 97: 2145–2150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fukuhara S, Chikumi H, Gutkind JS . Leukemia-associated Rho guanine nucleotide exchange factor (LARG) links heterotrimeric G proteins of the G(12) family to Rho. FEBS Lett 2000; 485: 183–188.

    Article  CAS  PubMed  Google Scholar 

  89. Ferrando AA, Armstrong SA, Neuberg DS, Sallan SE, Silverman LB, Korsmeyer SJ et al. Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. Blood 2003; 102: 262–268.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Gong-Hong Wei and other colleagues for helpful discussion and critical reading of the manuscript. We apologize for any errors or omissions in this review. This work was supported by a grant from the National Natural Science Foundation of China (N0. 30393110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D-P Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, ZY., Liu, DP. & Liang, CC. New insight into the molecular mechanisms of MLL-associated leukemia. Leukemia 19, 183–190 (2005). https://doi.org/10.1038/sj.leu.2403602

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403602

Keywords

This article is cited by

Search

Quick links