Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

The novel histone deacetylase inhibitor NVP-LAQ824: an addition to the therapeutic armamentarium in leukemia?

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Weisberg E, Catley L, Kujawa J, Atadja P, Remiszewski S, Fuerst P et al. The histone deacetylase inhibitor NVP-LAQ824 has significant activity against myeloid leukemia cells in vitro and in vivo. Leukemia, 2004; 18: 1951–1963.

    Article  CAS  Google Scholar 

  2. Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK . Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 2001; 1: 194–202.

    Article  CAS  Google Scholar 

  3. Jenuwein T, Allis CD . Translating the histone code. Science 2001; 293: 1074–1080.

    Article  CAS  Google Scholar 

  4. Marks PA, Miller T, Richon VM . Histone deacetylases. Curr Opin Pharmacol 2003; 3: 344–351.

    Article  CAS  Google Scholar 

  5. Grisolano JL, O'Neal J, Cain J, Tomasson MH . An activated receptor tyrosine kinase, TEL/PDGFbetaR, cooperates with AML1/ETO to induce acute myeloid leukemia in mice. Proc Natl Acad Sci USA 2003; 100: 9506–9511.

    Article  CAS  Google Scholar 

  6. Richon VM, Sandhoff TW, Rifkind RA, Marks PA . Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA 2000; 97: 10014–10019.

    Article  CAS  Google Scholar 

  7. Leder A, Leder P . Butyric acid, a potent inducer of erythroid differentiation in cultured erythroleukemic cells. Cell 1975; 5: 319–322.

    Article  CAS  Google Scholar 

  8. Richon VM, Webb Y, Merger R, Sheppard T, Jursic B, Ngo L et al. Second generation hybrid polar compounds are potent inducers of transformed cell differentiation. Proc Natl Acad Sci USA 1996; 93: 5705–5708.

    Article  CAS  Google Scholar 

  9. Vrana JA, Decker RH, Johnson CR, Wang Z, Jarvis WD, Richon VM et al. Induction of apoptosis in U937 human leukemia cells by suberoylanilide hydroxamic acid (SAHA) proceeds through pathways that are regulated by Bcl-2/Bcl-XL, c-Jun, and p21CIP1, but independent of p53. Oncogene 1999; 18: 7016–7025.

    Article  CAS  Google Scholar 

  10. Atadja P, Hsu M, Kwon P, Trogani N, Bhalla K, Remiszewski S . Molecular and cellular basis for the anti-proliferative effects of the HDAC inhibitor LAQ824. Novartis Found Symp 2004; 259: 249–266.

    CAS  PubMed  Google Scholar 

  11. Yu X, Guo ZS, Marcu MG, Neckers L, Nguyen DM, Chen GA et al. Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J Natl Cancer Inst 2002; 94: 504–513.

    Article  CAS  Google Scholar 

  12. Ruefli AA, Ausserlechner MJ, Bernhard D, Sutton VR, Tainton KM, Kofler R et al. The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc Natl Acad Sci USA 2001; 98: 10833–10838.

    Article  CAS  Google Scholar 

  13. Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Hideshima T et al. Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci USA 2004; 101: 540–545.

    Article  CAS  Google Scholar 

  14. Kurita-Ochiai T, Amano S, Fukushima K, Ochiai K . Cellular events involved in butyric acid-induced T cell apoptosis. J Immunol 2003; 171: 3576–3584.

    Article  CAS  Google Scholar 

  15. Bedi A, Barber JP, Bedi GC, el-Deiry WS, Sidransky D, Vala MS et al. BCR-ABL-mediated inhibition of apoptosis with delay of G2/M transition after DNA damage: a mechanism of resistance to multiple anticancer agents. Blood 1995; 86: 1148–1158.

    CAS  PubMed  Google Scholar 

  16. Nimmanapalli R, Fuino L, Bali P, Gasparetto M, Glozak M, Tao J et al. Histone deacetylase inhibitor LAQ824 both lowers expression and promotes proteasomal degradation of Bcr-Abl and induces apoptosis of imatinib mesylate-sensitive or -refractory chronic myelogenous leukemia-blast crisis cells. Cancer Res 2003; 63: 5126–5135.

    CAS  Google Scholar 

  17. Gorre ME, Ellwood-Yen K, Chiosis G, Rosen N, Sawyers CL . BCR-ABL point mutants isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90. Blood 2002; 100: 3041–3044.

    Article  CAS  Google Scholar 

  18. Yu C, Subler M, Rahmani M, Reese E, Krystal G, Conrad D et al. Induction of apoptosis in BCR/ABL+ cells by histone deacetylase inhibitors involves reciprocal effects on the RAF/MEK/ERK and JNK pathways. Cancer Biol Ther 2003; 2: 544–551.

    Article  CAS  Google Scholar 

  19. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001; 293: 876–880.

    Article  CAS  Google Scholar 

  20. Hoover RR, Mahon FX, Melo JV, Daley GQ . Overcoming STI571 resistance with the farnesyl transferase inhibitor SCH66336. Blood 2002; 100: 1068–1071.

    Article  CAS  Google Scholar 

  21. Qiu L, Burgess A, Fairlie DP, Leonard H, Parsons PG, Gabrielli BG . Histone deacetylase inhibitors trigger a G2 checkpoint in normal cells that is defective in tumor cells. Mol Biol Cell 2000; 11: 2069–2083.

    Article  CAS  Google Scholar 

  22. Garcia-Manero G, Issa J-P, Cortes J, Koller C, O'Brien S, Estey E et al. Phase I study of oral suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, in patients with leukemias or myelodysplastic syndromes. Am Soc Clin Oncol (Abstr) 2004; 23: 3027.

    Article  Google Scholar 

  23. Witzig TE, Timm M, Stenson M, Svingen PA, Kaufmann SH . Induction of apoptosis in malignant B cells by phenylbutyrate or phenylacetate in combination with chemotherapeutic agents. Clin Cancer Res 2000; 6: 681–692.

    CAS  PubMed  Google Scholar 

  24. Maggio SC, Rosato RR, Kramer LB, Dai Y, Rahmani M, Paik DS et al. The histone deacetylase inhibitor MS-275 interacts synergistically with fludarabine to induce apoptosis in human leukemia cells. Cancer Res 2004; 64: 2590–2600.

    Article  CAS  Google Scholar 

  25. Nimmanapalli R, Fuino L, Stobaugh C, Richon V, Bhalla K . Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl-positive human acute leukemia cells. Blood 2003; 101: 3236–3239.

    Article  CAS  Google Scholar 

  26. Yu C, Rahmani M, Almenara J, Subler M, Krystal G, Conrad D et al. Histone deacetylase inhibitors promote STI571-mediated apoptosis in STI571-sensitive and -resistant Bcr/Abl+ human myeloid leukemia cells. Cancer Res 2003; 63: 2118–2126.

    CAS  Google Scholar 

  27. Guo F, Sigua C, Tao J, Bali P, George P, Li Y et al. Cotreatment with histone deacetylase inhibitor LAQ824 enhances Apo-2L/tumor necrosis factor-related apoptosis inducing ligand-induced death inducing signaling complex activity and apoptosis of human acute leukemia cells. Cancer Res 2004; 64: 2580–2589.

    Article  CAS  Google Scholar 

  28. Rosato RR, Almenara JA, Dai Y, Grant S . Simultaneous activation of the intrinsic and extrinsic pathways by histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induces mitochondrial damage and apoptosis in human leukemia cells. Mol Cancer Ther 2003; 2: 1273–1284.

    CAS  PubMed  Google Scholar 

  29. Almenara J, Rosato R, Grant S . Synergistic induction of mitochondrial damage and apoptosis in human leukemia cells by flavopiridol and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). Leukemia 2002; 16: 1331–1343.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by awards CA93738, CA63753, and CA100866 from the NIH, DAMD-17-03-1-0209 from the Department of Defense, and award 6045-03 from the Leukemia and Lymphoma Society of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grant, S. The novel histone deacetylase inhibitor NVP-LAQ824: an addition to the therapeutic armamentarium in leukemia?. Leukemia 18, 1931–1933 (2004). https://doi.org/10.1038/sj.leu.2403522

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403522

This article is cited by

Search

Quick links