Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Apoptosis

Differential involvement of Bax and Bak in TRAIL-mediated apoptosis of leukemic T cells

Abstract

TRAIL-induced apoptosis has been considered a promising therapeutic approach for tumors that are resistant to chemotherapy, which is usually mediated via mitochondrial apoptotic cascades. Recent studies have shown that in certain cancer cells, TRAIL-mediated apoptosis is also dependent on mitochondrial involvement, suggesting that similar mechanisms of resistance to chemotherapy might be implicated in the resistance of tumor cells to TRAIL. We have used TRAIL-resistant leukemic cells that are deficient in both Bax and Bak to determine the roles of these Bcl-2 members in TRAIL-mediated apoptosis. Exposure of these cells to TRAIL did not have an impact on cell viability, although it induced the processing of caspase-3 to its active p20 subunit. The activity of the p20 caspase-3 appeared to be inhibited as no autoprocessing of this p20 subunit or cleavage of known caspase-3 substrates were detected. Also, in the absence of Bax and Bak, no release of mitochondrial apoptogenic proteins was observed following TRAIL treatment. Adenoviral transduction of the Bax, but not the Bak gene, to the Bax/Bak-deficient leukemic cells rendered them TRAIL-sensitive as assessed by enhanced apoptotic death and caspase-3 processing. These findings demonstrate preferential utilization of Bax over Bak in leukemic cell response to specific apoptotic stimulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Green DR . Apoptotic pathways: paper wraps stone blunts scissors. Cell 2000; 102: 1–4.

    Article  CAS  PubMed  Google Scholar 

  2. Cande C, Cohen I, Daugas E, Ravagnan L, Larochette N, Zamzami N et al. Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie 2002; 84: 215–222.

    Article  CAS  PubMed  Google Scholar 

  3. Daugas E, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N et al. Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J 2000; 14: 729–739.

    Article  CAS  PubMed  Google Scholar 

  4. Hegde R, Srinivasula SM, Zhang Z, Wassell R, Mukattash R, Cilenti L et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein–caspase interaction. J Biol Chem 2002; 277: 432–438.

    Article  CAS  PubMed  Google Scholar 

  5. Srinivasula SM, Hegde R, Saleh A, Datta P, Shiozaki E, Chai J et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 2001; 410: 112–116.

    Article  CAS  PubMed  Google Scholar 

  6. Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X et al. Structural basis of IAP recognition by Smac/DIABLO. Nature 2000; 408: 1008–1012.

    Article  CAS  PubMed  Google Scholar 

  7. Li S, Zhao Y, He X, Kim TH, Kuharsky DK, Rabinowich H et al. Relief of extrinsic pathway inhibition by the bid-dependent mitochondrial release of Smac in Fas-mediated hepatocyte apoptosis. J Biol Chem 2002; 277: 26912–26920.

    Article  CAS  PubMed  Google Scholar 

  8. Zou H, Li Y, Liu X, Wang X . An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 1999; 274: 11549–11556.

    Article  CAS  PubMed  Google Scholar 

  9. Vucic D, Deshayes K, Ackerly H, Pisabarro MT, Kadkhodayan S, Fairbrother WJ et al. SMAC negatively regulates the anti-apoptotic activity of melanoma inhibitor of apoptosis (ML-IAP). J Biol Chem 2002; 277: 12275–12279.

    Article  CAS  PubMed  Google Scholar 

  10. Ashkenazi A, Dixit VM . Death receptors: signaling and modulation. Science 1998; 281: 1305–1308.

    Article  CAS  PubMed  Google Scholar 

  11. Kischkel FC, Lawrence DA, Tinel A, LeBlanc H, Virmani A, Schow P et al. Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem 2001; 276: 46639–46646.

    Article  CAS  PubMed  Google Scholar 

  12. Gastman BR, Yin XM, Johnson DE, Wieckowski E, Wang GQ, Watkins SC et al. Tumor-induced apoptosis of T cells: amplification by a mitochondrial cascade. Cancer Res 2000; 60: 6811–6817.

    CAS  PubMed  Google Scholar 

  13. Sun XM, Bratton SB, Butterworth M, MacFarlane M, Cohen GM . Bcl-2 and Bcl-xL inhibit CD95-mediated apoptosis by preventing mitochondrial release of Smac/DIABLO and subsequent inactivation of X- linked inhibitor-of-apoptosis protein. J Biol Chem 2002; 277: 11345–11351.

    Article  CAS  PubMed  Google Scholar 

  14. Gross A, Yin XM, Wang K, Wei MC, Jockel J, Milliman C et al. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem 1999; 274: 1156–1163.

    Article  CAS  PubMed  Google Scholar 

  15. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 2001; 292: 727–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH . Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 2000; 7: 1166–1173.

    Article  CAS  PubMed  Google Scholar 

  17. LeBlanc H, Lawrence D, Varfolomeev E, Totpal K, Morlan J, Schow P et al. Tumor-cell resistance to death receptor-induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat Med 2002; 8: 274–281.

    Article  CAS  PubMed  Google Scholar 

  18. Deng Y, Lin Y, Wu X . TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev 2002; 16: 33–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang L, Yu J, Park BH, Kinzler KW, Vogelstein B . Role of BAX in the apoptotic response to anticancer agents. Science 2000; 290: 989–992.

    Article  CAS  PubMed  Google Scholar 

  20. Lindsten T, Ross AJ, King A, Zong WX, Rathmell JC, Shiels HA et al. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 2000; 6: 1389–1399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Theodorakis P, Lomonosova E, Chinnadurai G . Critical requirement of BAX for manifestation of apoptosis induced by multiple stimuli in human epithelial cancer cells. Cancer Res 2002; 62: 3373–3376.

    CAS  PubMed  Google Scholar 

  22. Kagawa S, Pearson SA, Ji L, Xu K, McDonnell TJ, Swisher SG et al. A binary adenoviral vector system for expressing high levels of the proapoptotic gene bax. Gene Ther 2000; 7: 75–79.

    Article  CAS  PubMed  Google Scholar 

  23. Fang B, Ji L, Bouvet M, Roth JA . Evaluation of GAL4/TATA in vivo. Induction of transgene expression by adenovirally mediated gene codelivery. J Biol Chem 1998; 273: 4972–4975.

    Article  CAS  PubMed  Google Scholar 

  24. Wang GQ, Wieckowski E, Goldstein LA, Gastman BR, Rabinovitz A, Gambotto A et al. Resistance to granzyme B-mediated cytochrome c release in Bak-deficient cells. J Exp Med 2001; 194: 1325–1337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gao G, Dou QP . N-terminal cleavage of bax by calpain generates a potent proapoptotic 18-kDa fragment that promotes bcl-2-independent cytochrome c release and apoptotic cell death. J Cell Biochem 2000; 80: 53–72.

    Article  CAS  PubMed  Google Scholar 

  26. Gao CF, Ren S, Zhang L, Nakajima T, Ichinose S, Hara T et al. Caspase-dependent cytosolic release of cytochrome c and membrane translocation of Bax in p53-induced apoptosis. Exp Cell Res 2001; 265: 145–151.

    Article  CAS  PubMed  Google Scholar 

  27. Heibein JA, Goping IS, Barry M, Pinkoski MJ, Shore GC, Green DR et al. Granzyme B-mediated cytochrome c release is regulated by the Bcl-2 family members bid and Bax. J Exp Med 2000; 192: 1391–1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li B, Dou QP . Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression. Proc Natl Acad Sci USA 2000; 97: 3850–3855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brimmell M, Mendiola R, Mangion J, Packham G . BAX frameshift mutations in cell lines derived from human haemopoietic malignancies are associated with resistance to apoptosis and microsatellite instability. Oncogene 1998; 16: 1803–1812.

    Article  CAS  PubMed  Google Scholar 

  30. Meijerink JP, Mensink EJ, Wang K, Sedlak TW, Sloetjes AW, de Witte T et al. Hematopoietic malignancies demonstrate loss-of-function mutations of BAX. Blood 1998; 91: 2991–2997.

    CAS  PubMed  Google Scholar 

  31. Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 1997; 275: 967–969.

    Article  CAS  PubMed  Google Scholar 

  32. Andre N, Braguer D, Brasseur G, Goncalves A, Lemesle-Meunier D, Guise S et al. Paclitaxel induces release of cytochrome c from mitochondria isolated from human neuroblastoma cells. Cancer Res 2000; 60: 5349–5353.

    CAS  PubMed  Google Scholar 

  33. Fulda S, Debatin KM . Betulinic acid induces apoptosis through a direct effect on mitochondria in neuroectodermal tumors. Med Pediatr Oncol 2000; 35: 616–618.

    Article  CAS  PubMed  Google Scholar 

  34. Sordet O, Rebe C, Leroy I, Bruey JM, Garrido C, Miguet C et al. Mitochondria-targeting drugs arsenic trioxide and lonidamine bypass the resistance of TPA-differentiated leukemic cells to apoptosis. Blood 2001; 97: 3931–3940.

    Article  CAS  PubMed  Google Scholar 

  35. Andre N, Carre M, Brasseur G, Pourroy B, Kovacic H, Briand C et al. Paclitaxel targets mitochondria upstream of caspase activation in intact human neuroblastoma cells. FEBS Lett 2002; 532: 256–260.

    Article  CAS  PubMed  Google Scholar 

  36. Wang GQ, Gastman BR, Wieckowski E, Goldstein LA, Gambotto A, Kim TH et al. A role for mitochondrial Bak in apoptotic response to anticancer drugs. J Biol Chem 2001; 276: 34307–34317.

    Article  CAS  PubMed  Google Scholar 

  37. Han Z, Hendrickson EA, Bremner TA, Wyche JH . A sequential two-step mechanism for the production of the mature p17:p12 form of caspase-3 in vitro. J Biol Chem 1997; 272: 13432–13436.

    Article  CAS  PubMed  Google Scholar 

  38. Boatright KM, Renatus M, Scott FL, Sperandio S, Shin H, Pedersen IM et al. A unified model for apical caspase activation. Mol Cell 2003; 11: 529–541.

    Article  CAS  PubMed  Google Scholar 

  39. Donepudi M, Mac Sweeney A, Briand C, Grutter MG . Insights into the regulatory mechanism for caspase-8 activation. Mol Cell 2003; 11: 543–549.

    Article  CAS  PubMed  Google Scholar 

  40. Cirman T, Oresic K, Mazovec GD, Turk V, Reed JC, Myers RM et al. Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J Biol Chem 2004; 279: 3578–3587.

    Article  CAS  PubMed  Google Scholar 

  41. Pataer A, Fang B, Yu R, Kagawa S, Hunt KK, McDonnell TJ et al. Adenoviral Bak overexpression mediates caspase-dependent tumor killing. Cancer Res 2000; 60: 788–792.

    CAS  PubMed  Google Scholar 

  42. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 1999; 104: 155–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lawrence D, Shahrokh Z, Marsters S, Achilles K, Shih D, Mounho B et al. Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat Med 2001; 7: 383–385.

    Article  CAS  PubMed  Google Scholar 

  44. Ashkenazi A, Dixit VM . Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 1999; 11: 255–260.

    Article  CAS  PubMed  Google Scholar 

  45. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 1999; 5: 157–163.

    Article  CAS  PubMed  Google Scholar 

  46. Roth W, Isenmann S, Naumann U, Kugler S, Bahr M, Dichgans J et al. Locoregional Apo2L/TRAIL eradicates intracranial human malignant glioma xenografts in athymic mice in the absence of neurotoxicity. Biochem Biophys Res Commun 1999; 265: 479–483.

    Article  CAS  PubMed  Google Scholar 

  47. Keogh SA, Walczak H, Bouchier-Hayes L, Martin SJ . Failure of Bcl-2 to block cytochrome c redistribution during TRAIL-induced apoptosis. FEBS Lett 2000; 471: 93–98.

    Article  CAS  PubMed  Google Scholar 

  48. Walczak H, Bouchon A, Stahl H, Krammer PH . Tumor necrosis factor-related apoptosis-inducing ligand retains its apoptosis-inducing capacity on Bcl-2- or Bcl-xL-overexpressing chemotherapy-resistant tumor cells. Cancer Res 2000; 60: 3051–3057.

    CAS  PubMed  Google Scholar 

  49. Fulda S, Meyer E, Debatin KM . Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene 2002; 21: 2283–2294.

    Article  CAS  PubMed  Google Scholar 

  50. Scaffidi C, Schmitz I, Zha J, Korsmeyer SJ, Krammer PH, Peter ME . Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J Biol Chem 1999; 274: 22532–22538.

    Article  CAS  PubMed  Google Scholar 

  51. Salvesen GS, Duckett CS . Apoptosis: IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 2002; 3: 401–410.

    Article  CAS  PubMed  Google Scholar 

  52. Verhagen AM, Vaux DL . Cell death regulation by the mammalian IAP antagonist Diablo/Smac. Apoptosis 2002; 7: 163–166.

    Article  CAS  PubMed  Google Scholar 

  53. Ke N, Godzik A, Reed JC . Bcl-B, a novel Bcl-2 family member that differentially binds and regulates Bax and Bak. J Biol Chem 2001; 276: 12481–12484.

    Article  CAS  PubMed  Google Scholar 

  54. Cheng EH, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ . VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 2003; 301: 513–517.

    Article  CAS  PubMed  Google Scholar 

  55. Petak I, Vernes R, Szucs KS, Anozie M, Izeradjene K, Douglas L et al. A caspase-8-independent component in TRAIL/Apo-2L-induced cell death in human rhabdomyosarcoma cells. Cell Death Differ 2003; 10: 729–739.

    Article  CAS  PubMed  Google Scholar 

  56. Deveraux QL, Leo E, Stennicke HR, Welsh K, Salvesen GS, Reed JC . Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J 1999; 18: 5242–5251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li S, Zhao Y, He X, Kim TH, Kuharsky DK, Rabinowich H et al. Relief of extrinsic pathway inhibition by the Bid-dependent mitochondrial release of Smac in Fas-mediated hepatocyte apoptosis. J Biol Chem 2002; 277: 26912–26920.

    Article  CAS  PubMed  Google Scholar 

  58. Arnt CR, Chiorean MV, Heldebrant MP, Gores GJ, Kaufmann SH . Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAP1 in situ. J Biol Chem 2002; 277: 44236–44243.

    Article  CAS  PubMed  Google Scholar 

  59. Fulda S, Wick W, Weller M, Debatin KM . Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 2002; 8: 808–815.

    Article  CAS  PubMed  Google Scholar 

  60. Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X et al. Structural basis of IAP recognition by Smac/DIABLO. Nature 2000; 408: 1008–1012.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from The National Institute of Health Grant No. RO1 CA 84134 (HR), and The Department of Defense, Grant No. DAMD17-02-1-0552 (HR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Rabinowich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, J., Goldstein, L., Gastman, B. et al. Differential involvement of Bax and Bak in TRAIL-mediated apoptosis of leukemic T cells. Leukemia 18, 1671–1680 (2004). https://doi.org/10.1038/sj.leu.2403496

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403496

Keywords

This article is cited by

Search

Quick links