Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

APL Biology

The expression of immediate early gene X-1 (IEX-1) is differentially induced by retinoic acids in NB4 and KG1 cells: possible implication in the distinct phenotype of retinoic acid-responsive and -resistant leukemic cells

A Corrigendum to this article was published on 23 August 2006

Abstract

In a cell-type- and stimulus-dependent fashion, the early response gene immediate early gene X-1 (IEX-1) is involved in growth control and modulation of apoptosis. The present study demonstrates that, in the two acute promyelocytic leukemia (APL) cell lines NB4 and KG1, exhibiting distinct responsiveness to retinoic acids (RAs), IEX-1 expression is rapidly (30–60 min) induced by all-trans- or cis-RA and independently of other signal transduction mediators, such as TNFα, NF-κB or MAP kinases. In NB4 cells (expressing PML–RARα), this increase is transient and completely reversible, along with a cell cycle arrest, ongoing differentiation and lower sensitivity to anti-cancer-drug-induced apoptosis. In contrast, the RA-induced IEX-1 expression in KG1 cells (expressing PLZF–RARα) persists over days, along with continued cell cycle progression and increased apoptotic sensitivity. Furthermore, two functional RA-response elements in the IEX-1 promoter were identified by gel shift and luciferase reporter gene assays. IEX-1 might be a rather unique transcriptional target of the two X–RARα fusion receptors exhibiting distinct responsiveness to RAs. Following a different time course of direct transcriptional induction by PML–RARα and PLZF–RARα in NB4 and KG1 cells, respectively, IEX-1 expression may be involved in the modified actions of these receptors and the distinct phenotypes of APL cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kondratyev AD, Chung KN, Jung MO . Identification and characterization of a radiation-inducible glycosylated human early-response gene. Cancer Res 1996; 56: 1498–1502.

    CAS  PubMed  Google Scholar 

  2. Schäfer H, Trauzold A, Siegel EG, Fölsch UR, Schmidt WE . PRG1: a novel early-response gene transcriptionally induced by pituitary adenylate cyclase activating polypeptide in a pancreatic carcinoma cell line. Cancer Res 1996; 56: 2641–2648.

    PubMed  Google Scholar 

  3. Pietzsch A, Büchler C, Aslanidis C, Schmitz G . Identification and characteri-zation of a novel monocyte/macrophage differentiation-dependent gene that is responsive to lipopolysaccharide, ceramide, and lysophosphatidylcholine. Biochem Biophys Res Commun 1997; 235: 4–9.

    Article  CAS  PubMed  Google Scholar 

  4. Charles CH, Yoon JK, Simske JS, Lau LF . Genomic structure cDNA and sequence, expression of gly96, a growth factor-inducible immediate-early gene encoding a short-lived glycosylated protein. Oncogene 1993; 8: 797–801.

    CAS  PubMed  Google Scholar 

  5. Wu MX . Roles of the stress-induced gene IEX-1 in regulation of cell death and oncogenesis (review). Apoptosis 2003; 8: 11–18.

    Article  CAS  PubMed  Google Scholar 

  6. Kobayashi T, Pittelkow MR, Warner GM, Squillace KA, Kumar R . Regulation of a novel immediate early response gene, IEX-1, in keratinocytes by 1alpha,25-dihydroxyvitamin D3. Biochem Biophys Res Commun 1998; 251: 868–873.

    Article  CAS  PubMed  Google Scholar 

  7. Kumar R, Kobayashi T, Warner GM, Wu Y, Salisbury JL, Lingle W et al. A novel immediate early response gene, IEX-1, is induced by ultraviolet radiation in human keratinocytes. Biochem Biophys Res Commun 1998; 253: 336–341.

    Article  CAS  PubMed  Google Scholar 

  8. Schäfer H, Lettau P, Trauzold A, Banasch M, Schmidt WE . Human PACAP response gene 1 (p22/PRG1): proliferation-associated expression in pancreatic carcinoma cells. Pancreas 1999; 18: 378–384.

    Article  PubMed  Google Scholar 

  9. Grobe O, Arlt A, Ungefroren H, Krupp G, Fölsch UR, Schmidt WE et al. Functional disruption of IEX-1 expression by concatameric hammerhead ribozymes alters growth properties of 293 cells. FEBS Lett 2001; 494: 196–200.

    Article  CAS  PubMed  Google Scholar 

  10. Schäfer H, Arlt A, Trauzold A, Hünermann-Jansen A, Schmidt WE . The putative apoptosis inhibitor IEX-1L is a mutant nonspliced variant of p22(PRG1/IEX-1) and is not expressed in vivo. Biochem Biophys Res Commun 1999; 262: 139–145.

    Article  PubMed  Google Scholar 

  11. Segev DL, Ha TU, Tran TT, Kenneally M, Harkin P, Jung M et al. Mullerian inhibiting substance inhibits breast cancer cell growth through an NF-κB-mediated pathway. J Biol Chem 2000; 275: 28371–28379.

    Article  CAS  PubMed  Google Scholar 

  12. Arlt A, Grobe O, Sieke A, Kruse ML, Fölsch UR, Schmidt WE et al. Expression of the NF-κB target gene p22PRG1/IEX−1 does not prevent cell death but instead triggers apoptosis in HeLa cells. Oncogene 2001; 20: 69–76.

    Article  CAS  PubMed  Google Scholar 

  13. Schilling D, Pittelkow MR, Kumar R . IEX-1, an immediate early gene, increa-ses the rate of apoptosis in keratinocytes. Oncogene 2001; 20: 7992–7997.

    Article  CAS  PubMed  Google Scholar 

  14. Segev DL, Hoshiya Y, Hoshiya M, Tran TT, Carey JL, Stephen AE et al. Mullerian-inhibiting substance regulates NF-kappa B signaling in the prostate in vitro and in vivo. Proc Natl Acad Sci USA 2002; 99: 239–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arlt A, Kruse ML, Minkenberg J, Breitenbroich M, Fölsch UR, Schäfer H . The early response gene IEX-1 attenuates NFκB activation in 293 cells, a possible counterregulatory process leading to enhanced cell death. Oncogene 2003; 22: 3443–3452.

    Google Scholar 

  16. Osawa Y, Nagaki M, Banno Y, Brenner DA, Nozawa Y, Moriwaki H et al. Expression of the NF-kappa B target gene X-ray-inducible immediate early response factor-1 short enhances TNF-alpha-induced hepatocyte apoptosis by inhibiting Akt activation. J Immunol 2003; 170: 4053–4060.

    Article  CAS  PubMed  Google Scholar 

  17. Wu MX, Ao Z, Prasad KV, Wu R, Schlossman SF . IEX-1L, an apoptosis inhibitor involved in NF-kappaB-mediated cell survival. Science 1998; 281: 998–1001.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Y, Schlossman SF, Edwards RA, Ou CN, Gu J, Wu MX . Impaired apoptosis, extended duration of immune responses, and a lupus-like autoimmune disease in IEX-1-transgenic mice. Proc Natl Acad Sci USA 2002; 99: 878–883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Garcia J, Ye Y, Arranz V, Letourneux C, Pezeron G, Porteu F . IEX-1: a new ERK substrate involved in both ERK survival activity and ERK activation. EMBO J 2002; 21: 5151–5163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ohki R, Yamamoto K, Mano H, Lee RT, Ikeda U, Shimada K . Identification of mechanically induced genes in human monocytic cells by DNA microarrays. J Hypertens 2002; 20: 685–691.

    Article  CAS  PubMed  Google Scholar 

  21. De Keulenaer GW, Wang Y, Feng Y, Muangman S, Yamamoto K, Thompson JF et al. Identification of IEX-1 as a biomechanically control-led nuclear factor-kappa B target gene that inhibits cardiomyocyte hypertrophy. Circ Res 2002; 90: 690–696.

    Article  CAS  PubMed  Google Scholar 

  22. Pietzsch A, Buchler C, Schmitz G . Genomic organization, promoter cloning, chromosomal and localization of the Dif-2 gene. Biochem Biophys Res Commun 1998; 245: 651–657.

    Article  CAS  PubMed  Google Scholar 

  23. Schäfer H, Trauzold A, Sebens T, Deppert W, Fölsch UR, Schmidt WE . The proliferation-associated early response gene p22/PRG1 is a novel p53 target gene. Oncogene 1998; 16: 2479–2487.

    Article  PubMed  Google Scholar 

  24. Schäfer H, Diebel J, Arlt A, Trauzold A, Schmidt WE . The promoter of human p22/PACAP response gene 1 (PRG1) contains functional binding sites for the p53 tumor suppressor and for NF kappa B. FEBS Lett 1998; 436: 139–143.

    Article  PubMed  Google Scholar 

  25. Huang Y-H, Wu JY, Zhang Y, Wu MX . Synergistic and opposing regulation of the stress-responsive gene IEX-1 by p53, c-Myc, and multiple NF-kappaB/rel complexes. Oncogene 2002; 21: 6128–6819.

    Google Scholar 

  26. Im HJ, Craig TA, Pittelkow MR, Kumar R . Characterization of a novel hexameric repeat DNA sequence in the promoter of the immediate early gene, IEX-1, that me-di-ates 1alpha,25-dihydroxyvitamin D(3)-associated IEX-1 gene repression. Oncogene 2002; 21: 3706–3714.

    Article  CAS  PubMed  Google Scholar 

  27. Im HJ, Pittelkow MR, Kumar R . Divergent regulation of the growth-promo-ting gene IEX-1 by the p53 tumor suppressor and Sp1. J Biol Chem 2002; 277: 14612–14621.

    Article  CAS  PubMed  Google Scholar 

  28. Kastner P, Mark M, Chambon P . Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell 1995; 83: 859–869.

    Article  CAS  PubMed  Google Scholar 

  29. Mangelsdorf DJ, Evans RM . The RXR heterodimers and orphan receptors. Cell 1995; 83: 841–850.

    Article  CAS  PubMed  Google Scholar 

  30. Kurokawa R, Soderstrom M, Horlein A, Halachmi S, Brown M, Rosenfeld MG et al. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature 1995; 377: 451–454.

    Article  CAS  PubMed  Google Scholar 

  31. Chen SJ, Zelent A, Tong JH, Yu HQ, Wang ZY, Derre J et al. Rearrangements of the retinoic acid receptor alpha and promyelocytic leukemia zinc finger genes resulting from t(11;17)(q23;q21) in a patient with acute promyelocytic leukemia. J Clin Invest 1993; 91: 2260–2267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. He LZ, Guidez F, Tribioli C, Peruzzi D, Ruthardt M, Zelent A et al. Distinct interactions of PML–RARalpha and PLZF–RARalpha with co-repressors determine differential responses to RA in APL. Nat Genet 1998; 18: 126–135.

    Article  CAS  PubMed  Google Scholar 

  33. Melnick A, Licht JD . Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 1999; 93: 3167–3215.

    CAS  PubMed  Google Scholar 

  34. Gianni M, Ponzanelli I, Mologni L, Reichert U, Rambaldi A, Terao M et al. Retinoid-dependent growth inhibition, differentiation and apoptosis in acute promyelocytic leukemia cells. Cell Death Differ 2000; 7: 447–460.

    Article  CAS  PubMed  Google Scholar 

  35. Allouche M, Charrad RS, Bettaieb A, Greenland C, Grignon C, Smadja-Joffe F . Ligation of the CD44 adhesion molecule inhibits drug-induced apoptosis in human myeloid leukemia cells. Blood 2000; 96: 1187–1190.

    CAS  PubMed  Google Scholar 

  36. Cheng GX, Zhu XH, Men XQ, Wang L, Huang QH, Jin XL et al. Distinct leukemia phenotypes in transgenic mice and different corepressor interactions generated by promyelocytic leukemia variant fusion genes PLZF–RARalpha and NPM-RARalpha. Proc Natl Acad Sci USA 1996; 96: 6318–6323.

    Article  Google Scholar 

  37. Ahmed N, Laverick L, Sammons J, Baumforth KR, Hassan HT . Effect of all-trans retinoic acid on chemotherapy induced apoptosis and down-regulation of Bcl-2 in human myeloid leukaemia CD34 positive cells. Leuk Res 1999; 23: 741–749.

    Article  CAS  PubMed  Google Scholar 

  38. Lavelle D, Chen YH, Hankewych M, Desimone J . Inhibition of myeloma cell growth by all-trans retinoic acid is associated with upregulation of p21WAF1 and dephosphorylation of the retinoblastoma protein. Leuk Lymphoma 1999; 35: 261–268.

    Article  CAS  PubMed  Google Scholar 

  39. Chen YH, Lavelle D, DeSimone J, Uddin S, Platanias LC, Hankewych M . Growth inhibition of a human myeloma cell line by all-trans retinoic acid is not mediated through downregulation of interleukin-6 receptors but through upregulation of p21(WAF1). Blood 1999; 94: 251–259.

    CAS  PubMed  Google Scholar 

  40. Hu ZB, Ma W, Uphoff CC, Lanotte M, Drexler HG . Modulation of gene expression in the acute promyelocytic leukemia cell line NB4. Leukemia 1993; 7: 1817–1823.

    CAS  PubMed  Google Scholar 

  41. Bocchia M, Xu Q, Wesley U, Xu Y, Korontsvit T, Loganzo F et al. Modulation of p53, WAF1/p21 and BCL-2 expression during retinoic acid-induced differentiation of NB4 promyelocytic cells. Leuk Res 1997; 21: 439–447.

    Article  CAS  PubMed  Google Scholar 

  42. Manna SK, Aggarwal BB . All-trans-retinoic acid upregulates TNF receptors potentiates TNF-induced activation of nuclear factors-kappaB., activated protein-1 apoptosis in human lung cancer cells. Oncogene 2000; 19: 2110–2119.

    Article  CAS  PubMed  Google Scholar 

  43. Hauksdottir H, Privalsky ML . DNA recognition by aberrant retinoic acid receptors implicated in human acute promyelocytic leukemia. Cell Growth Differ 2001; 12: 85–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yoshida H, Kitamura K, Tanaka K, Omura S, Miyazaki T, Hachiya T et al. Accelerated degradation of PML–retinoic acid receptor alpha (PML–RARA) oncoprotein by all-trans-retinoic acid in acute promyelocytic leukemia: possible role of the proteasome pathway. Cancer Res 1996; 56: 2945–2948.

    CAS  PubMed  Google Scholar 

  45. Gianni M, Kalac Y, Ponzanelli I, Rambaldi A, Terao M, Garattini E . Tyrosine kinase inhibitor STI571 potentiates the pharmacologic activity of retinoic acid in acute promyelocytic leukemia cells: effects on the degradation of RARalpha and PML–RARalpha. Blood 2001; 97: 3234–3243.

    Article  CAS  PubMed  Google Scholar 

  46. Boudjelal M, Voorhees JJ, Fisher GJ . Retinoid signaling is attenuated by proteasome-mediated degradation of retinoid receptors in human keratinocyte HaCaT cells. Exp Cell Res 2002; 274: 130–137.

    Article  CAS  PubMed  Google Scholar 

  47. Witcher M, Ross DT, Rousseau C, Deluca L, Miller Jr WH . Synergy between all-trans retinoic acid tumor necrosis factor pathways in acute leukemia cells. Blood 2003; 102: 237–245.

    Article  CAS  PubMed  Google Scholar 

  48. Harant H, de Martin R, Andrew PJ, Foglar E, Dittrich C, Lindley IJ . Synergistic activation of interleukin-8 gene transcription by all-trans-retinoic acid and TNF-alpha involves the transcription factor NF-kappaB. J Biol Chem 1996; 271: 26954–26961.

    Article  CAS  PubMed  Google Scholar 

  49. Lee SK, Kim JH, Lee YC, Cheong J, Lee JW . Silencing mediator of retinoic acid and thyroid hormone receptors., as a novel transcriptional corepressor molecule of activating protein-1, nuclear factor-κB., and serum response factor. J Biol Chem 2000; 275: 12470–12474.

    Article  CAS  PubMed  Google Scholar 

  50. Guidez F, Ivins S, Zhu J, Soderstrom M, Waxman S, Zelent A . Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PML– and PLZF–RARalpha underlie molecular pathogenesis and treatment of acute promyelocytic leukemia. Blood 1998; 91: 2634–2642.

    CAS  PubMed  Google Scholar 

  51. Park DJ, Vuong PT, De Vos S, Douer D, Koeffler HP . Comparative analysis of genes regulated by PML/RAR{alpha} PLZF/RAR{alpha} and in response to retinoic acid using oligonucleotide arrays. Blood 2003; 102: 3727–3736.

    Article  CAS  PubMed  Google Scholar 

  52. Zubiaga AM, Belasco JG, Greenberg ME . The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol Cell Biol 1995; 15: 2219–2230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shaw G, Kamen R . A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 1986; 46: 659–667.

    Article  CAS  PubMed  Google Scholar 

  54. Flanagan SA, Meckling KA . All-trans-retinoic acid increases cytotoxicity of 1-beta-D-arabinofuranosylcytosine in NB4 cells. Cancer Chemother Pharmacol 2003; 51: 363–375.

    CAS  PubMed  Google Scholar 

  55. Ketley NJ, Allen PD, Kelsey SM, Newland AC . Modulation of idarubicin-induced apoptosis in human acute myeloid leukemia blasts by all-trans retinoic acid, 1,25(OH)2 vitamin D3, and granulocyte-macrophage colony-stimulating factor. Blood 1997; 90: 4578–4587.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant of the German Research Society DFG (SFB-415/A13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Schäfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arlt, A., Minkenberg, J., Kocs, B. et al. The expression of immediate early gene X-1 (IEX-1) is differentially induced by retinoic acids in NB4 and KG1 cells: possible implication in the distinct phenotype of retinoic acid-responsive and -resistant leukemic cells. Leukemia 18, 1646–1655 (2004). https://doi.org/10.1038/sj.leu.2403481

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403481

Keywords

This article is cited by

Search

Quick links