Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

ALL

Incidence and relevance of secondary chromosome abnormalities in childhood TEL/AML1+ acute lymphoblastic leukemia: an interphase FISH analysis

Abstract

The aim of the present study was to determine the frequency and clinical relevance of the most common secondary karyotype abnormalities in TEL/AML1+ B-cell precursor acute lymphoblastic leukemia (ALL) as assessed with fluorescence in situ hybridization (FISH) analyses. Screening of 372 patients who were enrolled in two consecutive Austrian childhood ALL multicenter trials identified 94 (25%) TEL/AML1+ cases. TEL deletions, trisomy 21 and an additional der(21)t(12;21) were detected in 52 (55%), 13 (14%) and 14 (15%) TEL/AML1+ patients, respectively. The 12p aberrations (P=0.001) and near tetraploidy (P=0.045) were more common in TEL/AML1+ patients, whereas the incidence of diploidy, pseudodiploidy, hypodiploidy, low hyperdiploidy, near triploidy, del(6q), chromosome 9 and 11q23 abnormalities was similar among TEL/AML1+ and TEL/AML1− patients. None of the TEL/AML1+ patients had a high hyperdiploid karyotype. Univariate analysis indicated that among TEL/AML1+ patients those with a deletion of the nontranslocated TEL allele had a worse prognosis than those without this abnormality (P=0.034). We concluded that the type and incidence of the most common secondary aberrations in TEL/AML1+ ALL can be conveniently identified with little additional effort during interphase screening with appropriate TEL and AML1 FISH probes. We also provided preliminary evidence that the deletion of the nontranslocated TEL allele may adversely influence the clinical course of TEL/AML1+ ALL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Romana SP, Le Coniat M, Berger R . t(12;21): a new recurrent translocation in acute lymphoblastic leukemia. Genes Chromosomes Cancer 1994; 9: 186–191.

    Article  CAS  PubMed  Google Scholar 

  2. Golub TR, Barker GF, Bohlander SK, Hiebert SW, Ward DC, Bray-Ward P et al. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci USA 1995; 92: 4917–4921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shurtleff SA, Buijs A, Behm FG, Rubnitz JE, Raimondi SC, Hancock ML et al. TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia 1995; 9: 1985–1989.

    CAS  PubMed  Google Scholar 

  4. McLean TW, Ringold S, Neuberg D, Stegmaier K, Tantravahi R, Ritz J et al. TEL/AML-1 dimerizes and is associated with a favorable outcome in childhood acute lymphoblastic leukemia. Blood 1996; 88: 4252–4258.

    CAS  PubMed  Google Scholar 

  5. Tsang KS, Li CK, Chik KW, Shing MM, Tsoi WC, Ng MH et al. TEL/AML1 rearrangement and the prognostic significance in childhood acute lymphoblastic leukemia in Hong Kong. Am J Hematol 2001; 68: 91–98.

    Article  CAS  PubMed  Google Scholar 

  6. Borkhardt A, Cazzaniga G, Viehmann S, Valsecchi MG, Ludwig WD, Burci L et al. Incidence and clinical relevance of TEL/AML1 fusion genes in children with acute lymphoblastic leukemia enrolled in the German and Italian multicenter therapy trials. Associazione Italiana Ematologia Oncologia Pediatrica and the Berlin–Frankfurt–Munster Study Group. Blood 1997; 90: 571–577.

    CAS  PubMed  Google Scholar 

  7. Harbott J, Viehmann S, Borkhardt A, Henze G, Lampert F . Incidence of TEL/AML1 fusion gene analyzed consecutively in children with acute lymphoblastic leukemia in relapse. Blood 1997; 90: 4933–4937.

    CAS  PubMed  Google Scholar 

  8. Rubnitz JE, Shuster JJ, Land VJ, Link MP, Pullen DJ, Camitta BM et al. Case–control study suggests a favorable impact of TEL rearrangement in patients with B-lineage acute lymphoblastic leukemia treated with antimetabolite-based therapy: a Pediatric Oncology Group study. Blood 1997; 89: 1143–1146.

    CAS  PubMed  Google Scholar 

  9. Borkhardt A, Harbott J, Lampert F . Biology and clinical significance of the TEL/AML1 rearrangement. Curr Opin Pediatr 1999; 11: 33–38.

    Article  CAS  PubMed  Google Scholar 

  10. Zuna J, Hrusak O, Kalinova M, Muzikova K, Stary J, Trka J . TEL/AML1 positivity in childhood ALL: average or better prognosis? Czech Paediatric Haematology Working Group. Leukemia 1999; 13: 22–24.

    Article  CAS  PubMed  Google Scholar 

  11. Jamil A, Theil KS, Kahwash S, Ruymann FB, Klopfenstein KJ . TEL/AML-1 fusion gene. Its frequency and prognostic significance in childhood acute lymphoblastic leukemia. Cancer Genet Cytogenet 2000; 122: 73–78.

    Article  CAS  PubMed  Google Scholar 

  12. Uckun FM, Pallisgaard N, Hokland P, Navara C, Narla R, Gaynon PS et al. Expression of TEL-AML1 fusion transcripts and response to induction therapy in standard risk acute lymphoblastic leukemia. Leukemia Lymphoma 2001; 42: 41–56.

    Article  CAS  PubMed  Google Scholar 

  13. Loh ML, Rubnitz JE . TEL/AML1-positive pediatric leukemia: prognostic significance and therapeutic approaches. Curr Opin Hematol 2002; 9: 345–352.

    Article  PubMed  Google Scholar 

  14. Loh ML, Silverman LB, Young ML, Neuberg D, Golub TR, Sallan SE et al. Incidence of TEL/AML1 fusion in children with relapsed acute lymphoblastic leukemia. Blood 1998; 92: 4792–4797.

    CAS  PubMed  Google Scholar 

  15. Seeger K, Adams HP, Buchwald D, Beyermann B, Kremens B, Niemeyer C et al. TEL-AML1 fusion transcript in relapsed childhood acute lymphoblastic leukemia. The Berlin–Frankfurt–Munster Study Group. Blood 1998; 91: 1716–1722.

    CAS  PubMed  Google Scholar 

  16. Madzo J, Zuna J, Muzikova K, Kalinova M, Krejci O, Hrusak O et al. Slower molecular response to treatment predicts poor outcome in patients with TEL/AML1 positive acute lymphoblastic leukemia: prospective real-time quantitative reverse transcriptase-polymerase chain reaction study. Cancer 2003; 97: 105–113.

    Article  CAS  PubMed  Google Scholar 

  17. Hubeek I, Ramakers-van Woerden NL, Pieters R, Slater R, Beverloo HB, van Wering ER et al. TEL/AML1 fusion is not a prognostic factor in Dutch childhood acute lymphoblastic leukaemia. Br J Haematol 2001; 113: 254–255.

    Article  CAS  PubMed  Google Scholar 

  18. Ramakers-van Woerden NL, Pieters R, Loonen AH, Hubeek I, van Drunen E, Beverloo HB et al. TEL/AML1 gene fusion is related to in vitro drug sensitivity for L-asparaginase in childhood acute lymphoblastic leukemia. Blood 2000; 96: 1094–1099.

    CAS  PubMed  Google Scholar 

  19. Ford AM, Bennett CA, Price CM, Bruin MC, Van Wering ER, Greaves M . Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proc Natl Acad Sci USA 1998; 95: 4584–4588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wiemels JL, Ford AM, Van Wering ER, Postma A, Greaves M . Protracted and variable latency of acute lymphoblastic leukemia after TEL-AML1 gene fusion in utero. Blood 1999; 94: 1057–1062.

    CAS  PubMed  Google Scholar 

  21. Raynaud S, Cave H, Baens M, Bastard C, Cacheux V, Grosgeorge J et al. The 12; 21 translocation involving TEL and deletion of the other TEL allele: two frequently associated alterations found in childhood acute lymphoblastic leukemia. Blood 1996; 87: 2891–2899.

    CAS  PubMed  Google Scholar 

  22. Romana SP, Le Coniat M, Poirel H, Marynen P, Bernard O, Berger R . Deletion of the short arm of chromosome 12 is a secondary event in acute lymphoblastic leukemia with t(12;21). Leukemia 1996; 10: 167–170.

    CAS  PubMed  Google Scholar 

  23. Fears S, Vignon C, Bohlander SK, Smith S, Rowley JD, Nucifora G . Correlation between the ETV6/CBFA2 (TEL/AML1) fusion gene and karyotypic abnormalities in children with B-cell precursor acute lymphoblastic leukemia. Genes Chromosomes Cancer 1996; 17: 127–135.

    Article  CAS  PubMed  Google Scholar 

  24. Kobayashi H, Satake N, Kaneko Y . Detection of the Der (21)t(12; 21) chromosome forming the TEL-AML1 fusion gene in childhood acute lymphoblastic leukemia. Leukemia Lymphoma 1997; 28: 43–50.

    Article  CAS  PubMed  Google Scholar 

  25. Kempski H, Chalker J, Chessells J, Sturt N, Brickell P, Webb J et al. An investigation of the t(12;21) rearrangement in children with B-precursor acute lymphoblastic leukaemia using cytogenetic and molecular methods. Br J Haematol 1999; 105: 684–689.

    Article  CAS  PubMed  Google Scholar 

  26. Loncarevic IF, Roitzheim B, Ritterbach J, Viehmann S, Borkhardt A, Lampert F et al. Trisomy 21 is a recurrent secondary aberration in childhood acute lymphoblastic leukemia with TEL/AML1 gene fusion. Genes Chromosomes Cancer 1999; 24: 272–277.

    Article  CAS  PubMed  Google Scholar 

  27. Raynaud SD, Dastugue N, Zoccola D, Shurtleff SA, Mathew S, Raimondi SC . Cytogenetic abnormalities associated with the t(12;21): a collaborative study of 169 children with t(12;21)-positive acute lymphoblastic leukemia. Leukemia 1999; 13: 1325–1330.

    Article  CAS  PubMed  Google Scholar 

  28. Kempski HM, Sturt NT . The TEL-AML1 fusion accompanied by loss of the untranslocated TEL allele in B-precursor acute lymphoblastic leukaemia of childhood. Leukemia Lymphoma 2000; 40: 39–47.

    Article  CAS  PubMed  Google Scholar 

  29. Ma SK, Wan TS, Cheuk AT, Fung LF, Chan GC, Chan SY et al. Characterization of additional genetic events in childhood acute lymphoblastic leukemia with TEL/AML1 gene fusion: a molecular cytogenetics study. Leukemia 2001; 15: 1442–1447.

    Article  CAS  PubMed  Google Scholar 

  30. Andreasson P, Johansson B, Strombeck B, Donner M, Mitelman F, Hoglund M . Childhood acute lymphoblastic leukaemia with ider(21)(q10)t(12;21)(p12;q22): a new recurrent abnormality showing ETV6/CBFA2 fusion. Br J Haematol 1997; 98: 216–218.

    Article  CAS  PubMed  Google Scholar 

  31. Mathew S, Shurtleff SA, Raimondi SC . Novel cryptic, complex rearrangements involving ETV6-CBFA2 (TEL-AML1) genes identified by fluorescence in situ hybridization in pediatric patients with acute lymphoblastic leukemia. Genes Chromosomes Cancer 2001; 32: 188–193.

    Article  CAS  PubMed  Google Scholar 

  32. Yehuda-Gafni O, Cividalli G, Abrahmov A, Weintrob M, Neriah SB, Cohen R et al. Fluorescence in situ hybridization analysis of the cryptic t(12;21) (p13;q22) in childhood B-lineage acute lymphoblastic leukemia. Cancer Genet Cytogenet 2002; 132: 61–64.

    Article  CAS  PubMed  Google Scholar 

  33. Douet-Guilbert N, Morel F, Le Bris MJ, Herry A, Le Calvez G, Marion V et al. A fluorescence in situ hybridization study of TEL-AML1 fusion gene in B-cell acute lymphoblastic leukemia (1984–2001). Cancer Genet Cytogenet 2003; 144: 143–147.

    Article  CAS  PubMed  Google Scholar 

  34. van der Does-van den Berg A, Bartram CR, Basso G, Benoit YC, Biondi A, Debatin KM et al. Minimal requirements for the diagnosis, classification, and evaluation of the treatment of childhood acute lymphoblastic leukemia (ALL) in the ‘BFM Family’ Cooperative Group. Med Pediatr Oncol 1992; 20: 497–505.

    Article  CAS  PubMed  Google Scholar 

  35. Attarbaschi A, Mann G, Dworzak M, Urban C, Fink FM, Dieckmann K et al. Treatment results of childhood acute lymphoblastic leukemia in Austria – a report of 20 years' experience. Wien Klin Wochenschr 2002; 114: 148–157.

    CAS  PubMed  Google Scholar 

  36. Schrappe M, Reiter A, Ludwig WD, Harbott J, Zimmermann M, Hiddemann W et al. Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: results of trial ALL-BFM 90. Blood 2000; 95: 3310–3322.

    CAS  PubMed  Google Scholar 

  37. Ford AM, Fasching K, Panzer-Grümayer ER, König M, Haas OA, Greaves MF . Origins of ‘late’ relapse in childhood acute lymphoblastic leukemia with TEL-AML1 fusion genes. Blood 2001; 98: 558–564.

    Article  CAS  PubMed  Google Scholar 

  38. Konrad M, Metzler M, Panzer S, Ostreicher I, Peham M, Repp R et al. Late relapses evolve from slow-responding subclones in t(12;21)-positive acute lymphoblastic leukemia: evidence for the persistence of a preleukemic clone. Blood 2003; 101: 3635–3640.

    Article  CAS  PubMed  Google Scholar 

  39. Weston VJ, McConville CM, Mann JR, Darbyshire PJ, Lawson S, Gordon J et al. Molecular analysis of single colonies reveals a diverse origin of initial clonal proliferation in B-precursor acute lymphoblastic leukemia that can precede the t(12;21) translocation. Cancer Res 2001; 61: 8547–8553.

    CAS  PubMed  Google Scholar 

  40. Raimondi SC, Shurtleff SA, Downing JR, Rubnitz J, Mathew S, Hancock M et al. 12p abnormalities and the TEL gene (ETV6) in childhood acute lymphoblastic leukemia. Blood 1997; 90: 4559–4566.

    CAS  PubMed  Google Scholar 

  41. Harewood L, Robinson H, Harris R, Al-Obaidi MJ, Jalali GR, Martineau M et al. Amplification of AML1 on a duplicated chromosome 21 in acute lymphoblastic leukemia: a study of 20 cases. Leukemia 2003; 17: 547–553.

    Article  CAS  PubMed  Google Scholar 

  42. Heerema NA, Sather HN, Sensel MG, Lee MK, Hutchinson R, Nachman JB et al. Prognostic significance of cytogenetic abnormalities of chromosome arm 12p in childhood acute lymphoblastic leukemia: a report from the Children's Cancer Group. Cancer 2000; 88: 1945–1954.

    Article  CAS  PubMed  Google Scholar 

  43. O'Connor HE, Butler TA, Clark R, Swanton S, Harrison CJ, Secker-Walker LM et al. Abnormalities of the ETV6 gene occur in the majority of patients with aberrations of the short arm of chromosome 12: a combined PCR and Southern blotting analysis. Leukemia 1998; 12: 1099–1106.

    Article  CAS  PubMed  Google Scholar 

  44. Sato Y, Suto Y, Pietenpol J, Golub TR, Gilliland DG, Davis EM et al. TEL and KIP1 define the smallest region of deletions on 12p13 in hematopoietic malignancies. Blood 1995; 86: 1525–1533.

    CAS  PubMed  Google Scholar 

  45. Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002; 1: 133–143.

    Article  CAS  PubMed  Google Scholar 

  46. Golub TR, McLean T, Stegmaier K, Carroll M, Tomasson M, Gilliland DG . The TEL gene and human leukemia. Biochim Biophys Acta 1996; 1288: M7–M10.

    PubMed  Google Scholar 

  47. Lanza C, Volpe G, Basso G, Gottardi E, Perfetto F, Cilli V et al. The common TEL/AML1 rearrangement does not represent a frequent event in acute lymphoblastic leukaemia occurring in children with Down syndrome. Leukemia 1997; 11: 820–821.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the research program ‘Genome Research for Health’ of the Austrian Ministry of Education, Science and Culture (GEN-AU Child, GZ 200.071/3-VI/2a/2002), by the ‘Fonds zur Förderung der wissenschaftlichen Forschung’ (Grant P15150) and by the ‘Österreichische Kinderkrebshilfe’.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to O A Haas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Attarbaschi, A., Mann, G., König, M. et al. Incidence and relevance of secondary chromosome abnormalities in childhood TEL/AML1+ acute lymphoblastic leukemia: an interphase FISH analysis. Leukemia 18, 1611–1616 (2004). https://doi.org/10.1038/sj.leu.2403471

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403471

Keywords

This article is cited by

Search

Quick links