Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Transplantation studies in C3-deficient animals reveal a novel role of the third complement component (C3) in engraftment of bone marrow cells

Abstract

Mice deficient in complement C3 (C3−/−) are hematologically normal under steady-state conditions, and yet displayed a significant delay in hematopoietic recovery from either irradiation or transplantation of wild-type (WT) hematopoietic stem/progenitor cells (HSPC). Transplantation of histocompatible WT Sca-1+ cells into C3−/− mice resulted in a (i) decrease in day 12 CFU-S, (ii) 5–7-day delay in platelet and leukocyte recovery, and (iii) reduced number of BM CFU-GM progenitors at day 16 after transplantation. Nevertheless, HSPC from C3−/− mice engrafted normally into irradiated WT mice, suggesting that there was a defect in the hematopoietic environment of C3−/− mice. Since C3−/− mice cannot activate/cleave C3, the C3 fragments C3a, C3ades-Arg, and iC3b were examined for a role in HSPC engraftment. Liquid-phase C3a and C3ades-Arg increased CXCR4 incorporation into membrane lipid rafts (thus potentiating HSPC responses to SDF-1 gradients), whereas iC3b was deposited onto irradiated BM cells and functioned to tether CR3(CD11b/CD18)+HSPC to damaged stroma. The activity of C3ades-Arg suggested that C3aR+HSPC also expressed the C5L2 (receptor for C3a and C3ades-Arg) and this was confirmed. In conclusion, a novel mechanism for HSC engraftment was identified, which involves complement activation and specific C3 fragments that promote conditioning for transplantation and enhance HSPC engraftment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Walport MJ . Complement. First of two parts. N Engl J Med 2001; 344: 1058–1066.

    Article  CAS  Google Scholar 

  2. Walport MJ . Complement. Second of two parts. N Engl J Med 2001; 344: 1140–1144.

    Article  CAS  Google Scholar 

  3. Ross GD, Lambris JD, Cain JA, Newman SL . Generation of three different fragments of bound C3 with purified factor I or serum. I. Requirements for factor H vs CR1 cofactor activity. J Immunol 1982; 129: 2051–2060.

    CAS  PubMed  Google Scholar 

  4. Wilken HC, Götze O, Werfel T, Zwirner J . C3adesArg does not bind to and signal through the human C3a receptor. Immunol Lett 1999; 67: 141–145.

    Article  CAS  Google Scholar 

  5. Ross GD . Complement receptors. In: Creighton TE (ed). Wiley Encyclopedia of Molecular Medicine. New York: John Wiley & Sons, 2002, pp 890–893.

    Google Scholar 

  6. Ohno M, Hirata T, Enomoto M, Araki T, Ishimaru H, Takahashi TA . A putative chemoattractant receptor, C5L2, is expressed in granulocyte and immature dendritic cells, but not in mature dendritic cells. Mol Immunol 2000; 37: 407–412.

    Article  CAS  Google Scholar 

  7. Cain SA, Monk PN . The orphan receptor C5L2 has high affinity binding sites for complement fragments C5a and C5a des-Arg74. J Biol Chem 2002; 277: 7165–7169.

    Article  CAS  Google Scholar 

  8. Kalant D, Cain SA, Maslowska M, Sniderman AS, Cianflone D, Monk PN . The chemoattractant receptor-like protein, C5L2, binds C3a desArg77/acylation stimulating protein. J Biol Chem 2003; 278: 11123–11129.

    Article  CAS  Google Scholar 

  9. Xia Y, Borland G, Huang J, Mizukami I, Petty HR, Todd III RF et al. Function of the lectin domain of Mac-1/complement receptor type 3 (CD11b/CD18) in regulating neutrophil adhesion. J Immunol 2002; 169: 6417–6426.

    Article  CAS  Google Scholar 

  10. Ross GD . Role of the lectin domain of Mac-1/CR3 (CD11b/CD18) in regulating intercellular adhesion. Immunol Res 2002; 25: 219–227.

    Article  CAS  Google Scholar 

  11. Teixido J, Hemler ME, Greenberger JS, Anklesaria P . Role of β1 and β2 integrins in the adhesion of human CD34hi stem cells to bone marrow stroma. J Clin Invest 1992; 90: 358–367.

    Article  CAS  Google Scholar 

  12. Coombe DR, Watt SM, Parish CR . Mac-1 (CD11b/CD18) and CD45 mediate the adhesion of hematopoietic progenitor cells to stromal cell elements via recognition of stromal heparan sulfate. Blood 1994; 84: 739–752.

    CAS  PubMed  Google Scholar 

  13. Fischer WH, Jagels MA, Hugli TE . Regulation of IL-6 synthesis in human peripheral blood mononuclear cells by C3a and C3adesArg . J Immunol 1999; 162: 453–459.

    CAS  PubMed  Google Scholar 

  14. Werfel T, Kirchhoff K, Wittmann M, Begemann G, Kapp A, Heidenreich F et al. Activated human T lymphocytes express a functional C3a receptor. J Immunol 2000; 165: 6599–6605.

    Article  CAS  Google Scholar 

  15. Kopf M, Abel B, Gallimore A, Carroll M, Bachmann MF . Complement component C3 promotes T-cell priming and lung migration to control acute influenza virus infection. Nat Med 2002; 8: 373–378.

    Article  CAS  Google Scholar 

  16. Schraufstatter IU, Trieu K, Sikora L, Sriramarao P, DiScipio R . Complement C3a and C5a induce different signal transduction cascades in endothelial cells. J Immunol 2002; 169: 2102–2110.

    Article  CAS  Google Scholar 

  17. Ishida A, Zeng H, Ogawa M . Expression of lineage markers by CD34+ hematopoietic stem cells of adult mice. Exp Hematol 2002; 30: 361–365.

    Article  Google Scholar 

  18. Reca R, Mastellos D, Majka M, Marquez L, Ratajczak J, Franchini S et al. Functional receptor for C3a anaphylatoxin is expressed by normal hematopoietic stem/progenitor cells, and C3a enhances their homing-related responses to SDF-1. Blood 2003; 101: 3784–3793.

    Article  CAS  Google Scholar 

  19. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 1998; 95: 9448–9453.

    Article  CAS  Google Scholar 

  20. Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 1998; 393: 591–594.

    Article  CAS  Google Scholar 

  21. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR . Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998; 393: 595–599.

    Article  CAS  Google Scholar 

  22. Moore MA, Hattori K, Heissig B, Shieh JH, Dias S, Crystal RG et al. Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoietin-1. Ann N Y Acad Sci 2001; 938: 36–45.

    Article  CAS  Google Scholar 

  23. Lapidot T, Kollet O . The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2mnull mice. Leukemia 2002; 16: 1992–2003.

    Article  CAS  Google Scholar 

  24. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 2002; 3: 687–694.

    Article  CAS  Google Scholar 

  25. Lévesque J-P, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ . Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 2003; 111: 187–196.

    Article  Google Scholar 

  26. Papayannopoulou T . Current mechanistic scenarios in hematopoietic stem/progenitor cell mobilization. Blood 2004; 103: 1580–1585.

    Article  CAS  Google Scholar 

  27. Nguyen DH, Taub D . CXCR4 function requires membrane cholesterol: implications for HIV infection. J Immunol 2002; 168: 4121–4126.

    Article  CAS  Google Scholar 

  28. Raulin J . Human immunodeficiency virus and host cell lipids. Interesting pathways in research for a new HIV therapy. Prog Lipid Res 2002; 41: 27–65.

    Article  CAS  Google Scholar 

  29. Guan JL . Cell biology. Integrins, rafts, Rac, and Rho. Science 2004; 303: 773–774.

    Article  CAS  Google Scholar 

  30. Yang FC, Atkinson SJ, Gu Y, Borneo JB, Roberts AW, Zheng Y et al. Rac and Cdc42 GTPases control hematopoietic stem cell shape, adhesion, migration, and mobilization. Proc Natl Acad Sci USA 2001; 98: 5614–5618.

    Article  CAS  Google Scholar 

  31. Gu Y, Filippi MD, Cancelas JA, Siefring JE, Williams EP, Jasti AC et al. Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science 2003; 302: 445–449.

    Article  CAS  Google Scholar 

  32. Del Pozo MA, Alderson NB, Kiosses WB, Chiang HH, Anderson RG, Schwartz MA . Integrins regulate Rac targeting by internalization of membrane domains. Science 2004; 303: 839–842.

    Article  CAS  Google Scholar 

  33. Palazzo AF, Eng CH, Schlaepfer DD, Marcantonio EE, Gundersen GG . Localized stabilization of microtubules by integrin- and FAK-facilitated Rho signaling. Science 2004; 303: 836–839.

    Article  CAS  Google Scholar 

  34. Gómez-Moutón C, Lacalle RA, Mira E, Jiménez-Baranda S, Barber DF, Carrera AC et al. Dynamic redistribution of raft domains as an organizing platform for signaling during cell chemotaxis. J Cell Biol 2004; 164: 759–768.

    Article  Google Scholar 

  35. Kildsgaard J, Hollmann TJ, Matthews KW, Bian K, Murad F, Wetsel RA . Cutting edge: targeted disruption of the C3a receptor gene demonstrates a novel protective anti-inflammatory role for C3a in endotoxin-shock. J Immunol 2000; 165: 5406–5409.

    Article  CAS  Google Scholar 

  36. Rosenkranz AR, Coxon A, Maurer M, Gurish MF, Austen KF, Friend DS et al. Impaired mast cell development and innate immunity in Mac-1 (CD11b/CD18, CR3)-deficient mice. J Immunol 1998; 161: 6463–6467.

    CAS  PubMed  Google Scholar 

  37. Janowska-Wieczorek A, Majka M, Kijowski J, Baj-Krzyworzeka M, Reca R, Turner AR et al. Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment. Blood 2001; 98: 3143–3149.

    Article  CAS  Google Scholar 

  38. Ratajczak J, Reca R, Kucia M, Majka M, Allendorf DJ, Baran JT et al. Mobilization studies in mice deficient in either C3 or C3a-receptor (C3aR) reveal a novel role for complement in retention of hematopoietic stem/progenitor cells in bone marrow. Blood 2004; 103: 2071–2078.

    Article  CAS  Google Scholar 

  39. Ratajczak MZ, Pletcher CH, Marlicz W, Machalinski B, Moore J, Wasik M et al. CD34+, kit+, rhodamine123low phenotype identifies a marrow cell population highly enriched for human hematopoietic stem cells. Leukemia 1998; 12: 942–950.

    Article  CAS  Google Scholar 

  40. Kijowski J, Baj-Krzyworzeka M, Majka M, Reca R, Marquez LA, Christofidou-Solomidou M et al. The SDF-1–CXCR4 axis stimulates VEGF secretion and activates integrins but does not affect proliferation and survival in lymphohematopoietic cells. Stem Cells 2001; 19: 453–466.

    Article  CAS  Google Scholar 

  41. Libura J, Drukala J, Majka M, Tomescu O, Navenot JM, Kucia M et al. CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood 2002; 100: 2597–2606.

    Article  CAS  Google Scholar 

  42. Tamamura H, Hori A, Kanzaki N, Hiramatsu K, Mizumoto M, Nakashima H et al. T140 analogs as CXCR4 antagonists identified as anti-metastatic agents in the treatment of breast cancer. FEBS Lett 2003; 550: 79–83.

    Article  CAS  Google Scholar 

  43. Fernandis AZ, Cherla RP, Ganju RK . Differential regulation of CXCR4-mediated T-cell chemotaxis and mitogen-activated protein kinase activation by the membrane tyrosine phosphatase, CD45. J Biol Chem 2003; 278: 9536–9543.

    Article  CAS  Google Scholar 

  44. van Buul JD, Voermans C, van Gelderen J, Anthony EC, Van der Schoot CE, Hordijk PL . Leukocyte–endothelium interaction promotes SDF-1-dependent polarization of CXCR4. J Biol Chem 2003; 278: 30302–30310.

    Article  CAS  Google Scholar 

  45. Allendorf DJ, Ostroff GR, Baran JT, Dyke CW, Ratajczak MZ, Ross GD . Oral WGP Beta Glucan Treatment Accelerates Myeloid Recovery and Survival After Radiation Exposure. BTR 2003: Unified Science & Technology for Reducing Biological Threats & Countering Terrorism. Albuquerque: University of New Mexico, 2003, pp 104–113.

    Google Scholar 

  46. Randall TD, Weissman IL . Phenotypic and functional changes induced at the clonal level in hematopoietic stem cells after 5-fluorouracil treatment. Blood 1997; 89: 3596–3606.

    CAS  PubMed  Google Scholar 

  47. Velders GA, Pruijt JF, Verzaal P, van Os R, Van Kooyk Y, Figdor CG et al. Enhancement of G-CSF-induced stem cell mobilization by antibodies against the β2 integrins LFA-1 and Mac-1. Blood 2002; 100: 327–333.

    Article  CAS  Google Scholar 

  48. Ratajczak MZ, Kucia M, Reca R, Majka M, Janowska-Wieczorek A, Ratajczak J . Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells ‘hide out’ in the bone marrow. Leukemia 2004; 18: 29–40.

    Article  CAS  Google Scholar 

  49. Okinaga S, Slattery D, Humbles A, Zsengeller Z, Morteau O, Kinrade MB et al. C5L2, a nonsignaling C5A binding protein. Biochemistry 2003; 42: 9406–9415.

    Article  CAS  Google Scholar 

  50. Triantafilou M, Miyake K, Golenbock DT, Triantafilou K . Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. J Cell Sci 2002; 115: 2603–2611.

    CAS  PubMed  Google Scholar 

  51. Triantafilou M, Triantafilou K . Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol 2002; 23: 301–304.

    Article  CAS  Google Scholar 

  52. Wilschutz IJC, Erkens-Versluis ME, Ploemacher RE, Benner R, Vos O . Studies on the mechanism of haematopoietic stem cells (CFUs) mobilization. A role of the complement system. Cell Tissue Kinet 1979; 12: 299–311.

    Google Scholar 

  53. Circolo A, Garnier G, Fukuda W, Wang X, Hidvegi T, Szalai AJ et al. Genetic disruption of the murine complement C3 promoter region generates deficient mice with extrahepatic expression of C3 mRNA. Immunopharmacology 1999; 42: 135–149.

    Article  CAS  Google Scholar 

  54. Fischer MB, Ma MH, Hsu NC, Carroll MC . Local synthesis of C3 within the splenic lymphoid compartment can reconstitute the impaired immune response in C3-deficient mice. J Immunol 1998; 160: 2619–2625.

    CAS  PubMed  Google Scholar 

  55. Farzan M, Mirzabekov T, Kolchinsky P, Wyatt R, Cayabyab M, Gerard NP et al. Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 1999; 96: 667–676.

    Article  CAS  Google Scholar 

  56. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 2002; 109: 625–637.

    Article  CAS  Google Scholar 

  57. Lévesque J-P, Hendy J, Takamatsu Y, Williams B, Winkler IG, Simmons PJ . Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp Hematol 2002; 30: 440–449.

    Article  Google Scholar 

  58. Lapidot T, Petit I . Current understanding of stem cell mobilization. The roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 2002; 30: 973.

    Article  CAS  Google Scholar 

  59. Honczarenko M, Le Y, Glodek AM, Majka M, Campbell JJ, Ratajczak MZ et al. CCR5-binding chemokines modulate CXCL12 (SDF-1)-induced responses of progenitor B cells in human bone marrow through heterologous desensitization of the CXCR4 chemokine receptor. Blood 2002; 100: 2321–2329.

    Article  CAS  Google Scholar 

  60. Zhang M, Austen Jr WG, Chiu I, Alicot EM, Hung R, Ma M et al. Identification of a specific self-reactive IgM antibody that initiates intestinal ischemia/reperfusion injury. Proc Natl Acad Sci USA 2004; 101: 3886–3891.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institutes of Health (NIH) grants R01 HL61796 (MZR) and R01 CA86412 (GDR) and KLCRP grant to M2R. The authors thank Dr Rick Wetsel from University of Texas for BMMNC from C3aR-deficient mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Z Ratajczak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratajczak, M., Reca, R., Wysoczynski, M. et al. Transplantation studies in C3-deficient animals reveal a novel role of the third complement component (C3) in engraftment of bone marrow cells. Leukemia 18, 1482–1490 (2004). https://doi.org/10.1038/sj.leu.2403446

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403446

Keywords

This article is cited by

Search

Quick links