Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Biotechnical Methods Section BTS
  • Published:

Bio-Technical Methods Section

A diagnostic biochip for the comprehensive analysis of MLL translocations in acute leukemia

Abstract

Reciprocal rearrangements of the MLL gene are among the most common chromosomal abnormalities in both Acute Lymphoblastic and Myeloid Leukemia. The MLL gene, located on the 11q23 chromosomal band, is involved in more than 40 recurrent translocations. In the present study, we describe the development and validation of a biochip-based assay designed to provide a comprehensive molecular analysis of MLL rearrangements when used in a standard clinical pathology laboratory. A retrospective blind study was run with cell lines (n=5), and MLL positive and negative patient samples (n=31), to evaluate assay performance. The limits of detection determined on cell line data were 10−1, and the precision studies yielded 100% repeatability and 98% reproducibility. The study shows that the device can detect frequent (AF4, AF6, AF10, ELL or ENL) as well as rare partner genes (AF17, MSF). The identified fusion transcripts can then be used as molecular phenotypic markers of disease for the precise evaluation of minimal residual disease by RQ-PCR. This biochip-based molecular diagnostic tool allows, in a single experiment, rapid and accurate identification of MLL gene rearrangements among 32 different fusion gene (FG) partners, precise breakpoint positioning and comprehensive screening of all currently characterized MLL FGs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Rowley JD . The critical role of chromosome translocations in human leukemias. Annu Rev Genet 1998; 32: 495–519.

    Article  CAS  PubMed  Google Scholar 

  2. DiMartino JF, Cleary ML . MLL rearrangements in haematological malignancies: lessons from clinical and biological studies. Br J Haematol 1999; 106: 614–626.

    Article  CAS  PubMed  Google Scholar 

  3. Ziemin-van der Poel S, McCabe NR, Gill HJ, Espinosa III R, Patel Y, Harden A et al. Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc Natl Acad Sci USA 1991; 88: 10735–10739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bernard OA, Berger R . Molecular basis of 11q23 rearrangements in haematopoietic malignant proliferations. Genes Chromosomes Cancer 1995; 13: 75–85.

    Article  CAS  PubMed  Google Scholar 

  5. Collins EC, Rabbits TH . The promiscuous MLL gene links chromosomal translocations to cellular differentiation and tumour tropism. Trends Mol Med 2002; 8: 436–442.

    Article  CAS  PubMed  Google Scholar 

  6. Hayette S, Tigaud I, Maguer-Satta V, Bartholin L, Thomas X, Charrin C et al. Recurrent involvement of the MLL gene in adult T-lineage acute lymphoblastic leukemia. Blood 2002; 99: 4647–4649.

    Article  CAS  PubMed  Google Scholar 

  7. Huret JL Infobiogen. Atlas Genet Cytogenet Oncol Haematol. 11q23 rearrangements in leukaemia. http://www.infobiogen.fr/services/chromcancer/Anomalies/11q23ID1030.html (Accessed October 2003).

  8. Biondi A, Cimino G, Pieters R, Pui CH . Biological and therapeutic aspects of infant leukemia. Blood 2000; 96: 24–33.

    CAS  PubMed  Google Scholar 

  9. Bloomfield CD, Archer KJ, Mrozek K, Lillington DM, Kaneko Y, Head DR et al. 11q23 balanced chromosome aberrations in treatment-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosomes Cancer 2002; 33: 362–378.

    Article  PubMed  Google Scholar 

  10. Pui CH, Relling MV . Topoisomerase II inhibitor-related acute myeloid leukaemia. Br J Haematol 2000; 109: 13–23.

    Article  CAS  PubMed  Google Scholar 

  11. Secker-Walker LM . General Report on the European Union Concerted Action Workshop on 11q23, London UK, May 1997. Leukemia 1998; 12: 776–778.

    Article  CAS  PubMed  Google Scholar 

  12. Kourlas PJ, Strout MP, Becknell B, Veronese ML, Croce CM, Theil KS et al. Identification of a gene at 11q23 encoding a guanine nucleotide exchange factor: evidence for its fusion with MLL in acute myeloid leukemia. Proc Natl Acad Sci USA 2000; 97: 2145–2150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Caligiuri MA, Strout MP, Oberkircher AR, Yu F, de la Chapelle A, Bloomfield CD . The partial tandem duplication of ALL1 in acute myeloid leukemia with normal cytogenetics or trisomy 11 is restricted to one chromosome. Proc Natl Acad Sci USA 1997; 94: 3899–3902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood 1998; 92: 2322–2333.

    CAS  PubMed  Google Scholar 

  15. Martinez-Climent JA, Espinosa III R, Thirman MJ, Le Beau MM, Rowley JD . Abnormalities of chromosome band 11q23 and the MLL gene in pediatric myelomonocytic and monoblastic leukemias. Identification of the t(9;11) as an indicator of long survival. J Pediatr Hematol Oncol 1995; 17: 277–283.

    Article  CAS  PubMed  Google Scholar 

  16. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41–47.

    Article  CAS  PubMed  Google Scholar 

  17. Ayton PM, Cleary ML . Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 2001; 20: 5695–5707.

    Article  CAS  PubMed  Google Scholar 

  18. Cuthbert G, Thompson K, Breese G, McCullough S, Bown N . Sensitivity of FISH in detection of MLL translocations. Genes Chromosomes Cancer 2000; 29: 180–185.

    Article  CAS  PubMed  Google Scholar 

  19. Mathew S, Behm F, Dalton J, Raimondi S . Comparison of cytogenetics, Southern blotting, and fluorescence in situ hybridization as methods for detecting MLL gene rearrangements in children with acute leukemia and with 11q23 abnormalities. Leukemia 1999; 13: 1713–1720.

    Article  CAS  PubMed  Google Scholar 

  20. van der Burg M, Beverloo HB, Langerak AW, Wijsman J, van Drunen E, Slater R et al. Rapid and sensitive detection of all types of MLL gene translocations with a single FISH probe set. Leukemia 1999; 13: 2107–2113.

    Article  CAS  PubMed  Google Scholar 

  21. von Bergh A, Emanuel B, van Zelderen-Bhola S, Smetsers T, van Soest R, Stul M et al. A DNA probe combination for improved detection of MLL/11q23 breakpoints by double-color interphase-FISH in acute leukemias. Genes Chromosomes Cancer 2000; 28: 14–22.

    Article  CAS  PubMed  Google Scholar 

  22. Cox MC, Maffei L, Buffolino S, Del Poeta G, Venditti A, Cantonetti M et al. A comparative analysis of FISH, RT-PCR, and cytogenetics for the diagnosis of bcr-abl-positive leukemias. Am J Clin Pathol 1998; 109: 24–31.

    Article  CAS  PubMed  Google Scholar 

  23. Pallisgaard N, Hokland P, Riishoj DC, Pedersen B, Jorgensen P . Multiplex reverse transcription-polymerase chain reaction for simultaneous screening of 29 translocations and chromosomal aberrations in acute leukemia. Blood 1998; 92: 574–588.

    CAS  PubMed  Google Scholar 

  24. Repp R, Borkhardt A, Haupt E, Kreuder J, Brettreich S, Hammermann J et al. Detection of four different 11q23 chromosomal abnormalities by multiplex-PCR and fluorescence-based automatic DNA-fragment analysis. Leukemia 1995; 9: 210–215.

    CAS  PubMed  Google Scholar 

  25. Strehl S, Konig M, Mann G, Haas OA . Multiplex reverse transcriptase-polymerase chain reaction screening in childhood acute myeloblastic leukemia. Blood 2001; 97: 805–808.

    Article  CAS  PubMed  Google Scholar 

  26. Shi RZ, Morrissey JM, Rowley JD . Screening and quantification of multiple chromosome translocations in human leukemia. Clin Chem 2003; 49: 1066–1073.

    Article  CAS  PubMed  Google Scholar 

  27. Nasedkina T, Domer P, Zharinov V, Hoberg J, Lysov Y, Mirabekov A . Identification of chromosomal translocations in leukemias by hybridization with oligonucleotide microarrays. Haematologica 2002; 87: 363–372.

    CAS  PubMed  Google Scholar 

  28. Rasio D, Schichman SA, Negrini M, Canaani E, Croce CM . Complete exon structure of the ALL1 gene. Cancer Res 1996; 56: 1766–1769.

    CAS  PubMed  Google Scholar 

  29. Vardiman JW, Harris NL, Brunning RD . The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002; 100: 2292–2302.

    Article  CAS  PubMed  Google Scholar 

  30. Tanabe S, Zeleznik-Le NJ, Kobayashi H, Vignon C, Espinosa III R, LeBeau MM et al. Analysis of the t(6;11)(q27;q23) in leukemia shows a consistent breakpoint in AF6 in three patients and in the ML-2 cell line. Genes Chromosomes Cancer 1996; 15: 206–216.

    Article  CAS  PubMed  Google Scholar 

  31. Scholl C, Breitinger H, Schlenk RF, Döhner H, Fröhling S, Döhner K . AML Study Group Ulm. Development of a real-time RT-PCR assay for the quantification of the most frequent MLL/AF9 fusion types resulting from translocation t(9;11)(p22;q23) in acute leukemia. Genes Chromosomes Cancer 2003; 38: 274–280.

    Article  CAS  PubMed  Google Scholar 

  32. Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia – a Europe Against Cancer Program. Leukemia 2003; 17: 2318–2357.

    Article  CAS  PubMed  Google Scholar 

  33. Caldas C, So CW, MacGregor A, Ford AM, McDonald B, Chan LC et al. Exon scrambling of MLL transcripts occur commonly and mimic partial genomic duplication of the gene. Gene 1998; 208: 167–176.

    Article  CAS  PubMed  Google Scholar 

  34. Nam DK, Honoki K, Yu M, Yunis JJ . Alternative RNA splicing of the MLL gene in normal and malignant cells. Gene 1996; 178: 169–175.

    Article  CAS  PubMed  Google Scholar 

  35. Gozzetti A, Le Beau MM . Fluorescence in situ hybridizations: uses and limitations. Semin Hematol 2000; 37: 320–333.

    Article  CAS  PubMed  Google Scholar 

  36. Kreuzer KA, Lass U, Landt O, Nitsche A, Laser J, Ellbrock H et al. Highly sensitive and specific fluorescence reverse transcription PCR assay for the pseudogene-free detection of beta-actin transcripts as quantitative reference. Clin Chem 1999; 45: 297–300.

    CAS  PubMed  Google Scholar 

  37. Pui CH . Acute lymphoblastic leukemia in children. Curr Opin Oncol 2000; 12: 3–12.

    Article  CAS  PubMed  Google Scholar 

  38. Rubnitz JE, Raimondi SC, Tong X, Srivastava DK, Razzouk BI, Shurtleff SA et al. Favorable impact of the t(9;11) in childhood acute myeloid leukemia. J Clin Oncol 2002; 20: 2302–2309.

    Article  CAS  PubMed  Google Scholar 

  39. Rabbitts TH, Stocks MR . Chromosomal translocation products engender new intracellular therapeutic technologies. Nat Med 2003; 9: 383–386.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr C Bilhou Nabera (CHU, Bordeaux, France) and Dr N Dastugue (Hôpital Purpan, Toulouse, France) for providing samples, Dr D Birnbaum (IPC, Marsèille, France) for critical review of the manuscript, and Dr P Ravassard (LGN, Paris, France) for valuable discussion. We also gratefully acknowledge Ipsogen's Bioinformatics and Production Teams for their contributions. This work was partially supported by grants from PHRC97 (JG), the Agence Nationale de la Valorisation de la Recherche (ANVAR) and the Directions Régionales de l'Industrie de la Recherche et de l'Environnement (DRIRE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Maroc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maroc, N., Morel, A., Beillard, E. et al. A diagnostic biochip for the comprehensive analysis of MLL translocations in acute leukemia. Leukemia 18, 1522–1530 (2004). https://doi.org/10.1038/sj.leu.2403439

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403439

This article is cited by

Search

Quick links