Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Cyclooxygenase-1, but not -2, is upregulated in NB4 leukemic cells and human primary promyelocytic blasts during differentiation

Abstract

Cyclooxygenase (COX)-1 or -2 and specific prostaglandin (PG) synthases catalyze the formation of various PGs. We investigated the expression and activity of COX-1 and -2 during granulocyte-oriented maturation induced by all-trans-retinoic acid (ATRA) of NB4 cells, originated from a human acute promyelocytic leukemia (APL), and in blasts from APL patients. The expression of COX isoenzymes or prostaglandin synthases was also investigated in circulating granulocytes and human bone marrow. COX-1 was expressed and enzymatically active in NB4 cells and primary blasts. COX-1 mRNA and protein were induced by ATRA. COX-1 protein increased approximately 2–3.5-fold by culture day 3 in NB4 cells and primary blasts, while basal COX-2 expression was very low and unaffected by ATRA. COX-1-dependent PGE2 biosynthesis increased during differentiation approx. 5-fold. Indomethacin and the selective COX-1 inhibitor SC-560, but not selective COX-2 inhibition, impaired NB4 differentiation, reducing NADPH-oxidase activity, CD11b and CD11c expression. The immunohistochemistry of granulocytes and myeloid precursors in the bone marrow showed a large prevalence of COX-1 as compared to COX-2. In conclusion, COX-1 is induced during ATRA-dependent maturation and appears to contribute to myeloid differentiation both in vitro and ex vivo, and COX-1 activity may potentiate the differentiation of human APL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Smith WL, Langenbach R . Why there are two cyclooxygenase isozymes? J Clin Invest 2001; 107: 1491–1495.

    Article  CAS  Google Scholar 

  2. Rocca B, Maggiano N, Habib A, Petrucci G, Gessi M, Fattorossi A et al. Distinct expression of cyclooxygenase-1 and -2 in the human thymus. Eur J Immunol 2002; 32: 1482–1492.

    Article  CAS  Google Scholar 

  3. Rocca B, FitzGerald GA . Cyclooxygenases and prostaglandins: shaping up the immune response. Int Immunopharmacol 2002; 2: 603–630.

    Article  CAS  Google Scholar 

  4. Rocca B, Secchiero P, Ciabattoni G, Ranelletti FO, Catani L, Guidotti L et al. Cyclooxygenase-2 expression is induced during megakaryopoiesis and characterizes newly formed platelets. Proc Natl Acad Sci (USA) 2002; 99: 7634–7639.

    Article  CAS  Google Scholar 

  5. Datta MC . Prostaglandin E2 mediated effects on the synthesis of fetal and adult hemoglobin in blood erythroid bursts. Prostaglandins 1985; 29: 561–577.

    Article  CAS  Google Scholar 

  6. Honda A, Mori Y, Ikekawa N, Raz A . Manipulation of thromboxane synthesis by novel 26,27-dialkyl analogues of 1α,25-dihydroxyvitamin D3 in human promyelocytic leukemia (HL-60) cells. Eur J Pharmacol 1992; 229: 217–222.

    Article  CAS  Google Scholar 

  7. Nusing RM, Mohr S, Ullrich V . Activin A and retinoic acid synergize in cyclooxygenase-1 and thromboxane synthase induction during differentiation of J774.1 macrophages. Eur J Biochem 1995; 227: 130–136.

    Article  CAS  Google Scholar 

  8. Hoff T, DeWitt D, Kaever V, Resch K, Goppelt-Struebe M . Differentiation-associated expression of prostaglandin G/H synthase in monocytic cells. FEBS Lett 1993; 320: 38–42.

    Article  CAS  Google Scholar 

  9. Smith CJ, Morrow JD, Roberts LJ, Marnett LJ . Differentiation of monocytoid THP-1 cells with phorbol ester induces expression of prostaglandin endoperoxide synthase-1 (COX-1). Biochem Biophys Res Commun 1993; 192: 787–793.

    Article  CAS  Google Scholar 

  10. Honda A, Morita I, Murota S, Mori Y . Appearance of the arachidonic acid metabolic pathway in human promyelocytic leukemia (HL-60) cells during monocytic differentiation: enhancement of thromboxane synthesis by 1α,25-dihydroxyvitamin D3. Biochim Biophys Acta 1986; 877: 423–432.

    Article  CAS  Google Scholar 

  11. Sanduja SK, Mehta K, Xu XM, Hsu SM, Sanduja R, Wu KK . Differentiation-associated expression of prostaglandin H and thromboxane A synthases in monocytoid leukemia cell lines. Blood 1991; 78: 3178–3185.

    CAS  PubMed  Google Scholar 

  12. Dertinger SD, Torous DK, Tometsko AM . Modulation of phorbol ester-induced HL-60 differentiation by prostaglandin E2. Mutat Res 1995; 328: 55–62.

    Article  CAS  Google Scholar 

  13. Shibata Y, Bjorkman DR, Schmidt M, Oghiso Y, Volkman A . Macrophage colony-stimulating factor-induced bone marrow macrophages do not synthesize or release prostaglandin E2. Blood 1994; 83: 3316–3323.

    CAS  PubMed  Google Scholar 

  14. Kastner P, Chan S . Function of RARα during the maturation of neutrophils. Oncogene 2001; 20: 7178–7185.

    Article  CAS  Google Scholar 

  15. Ohno R, Asou N, Ohnishi K . Treatment of acute promyelocytic leukemia: strategy toward further increase of cure rate. Leukemia 2003; 17: 1454–1463.

    Article  CAS  Google Scholar 

  16. Roussel MJ, Lanotte M . Maturation sensitive and resistant t(15;17) NB4 cell lines as tools for APL physiopathology: nomenclature of cells and repertory of their known genetic alterations and phenotypes. Oncogene 2001; 20: 7287–7291.

    Article  CAS  Google Scholar 

  17. Lee KH, Chang MY, Ahn JI, Yu DH, Jung SS, Choi JH et al. Differential gene expression in retinoic acid-induced differentiation of acute promyelocytic leukemia cells, NB4 and HL-60 cells. Biochem Biophys Res Commun 2002; 296: 1125–1133.

    Article  CAS  Google Scholar 

  18. Gonchar MV, Sergeeva MG, Namgaladze DA, Mevkh AT . Lack of direct connection between arachidonic acid release and prostanoid synthesis upon differentiation of U937 cell. Biochem Biophys Res Commun 1998; 249: 829–832.

    Article  CAS  Google Scholar 

  19. Sellmayer A, Goessl C, Obermeier H, Volk R, Reder E, Weber C et al. Differential induction of eicosanoid synthesis in monocytic cells treated with retinoic acid and 1,25-dihydroxy-vitamin D3. Prostaglandins 1994; 47: 203–220.

    Article  CAS  Google Scholar 

  20. Jiang YJ, Xu TR, Lu B, Mymin D, Kroeger EA, Dembinski T et al. Cyclooxygenase expression is elevated in retinoic acid-differentiated U937 cells. Biochim Biophys Acta 2003; 1633: 51–60.

    Article  CAS  Google Scholar 

  21. Honda A, Raz A, Needleman P . Induction of cyclooxygenase synthesis in human promyelocytic leukaemia (HL-60) cells during monocytic or granulocytic differentiation. Biochem J 1990; 272: 259–262.

    Article  CAS  Google Scholar 

  22. Morosetti R, Park DJ, Chumakov AM, Grillier I, Shiohara M, Gombart AF et al. A novel, myeloid transcription factor, C/EBP epsilon, is upregulated during granulocytic, but not monocytic, differentiation. Blood 1997; 90: 2591–2600.

    CAS  PubMed  Google Scholar 

  23. Launay S, Giannì M, Kovàcs T, Bredoux R, Bruel A, Gélébart P et al. Lineage-specific modulation of calcium pump expression during myeloid differentiation. Blood 1999; 93: 4395–4405.

    CAS  PubMed  Google Scholar 

  24. Piantelli M, Ranelletti FO, Musiani P, Lauriola L, Maggiano N . A human thymoma with prothymocyte-like infiltration. Clin Immunol Immunopathol 1983; 28: 350–360.

    Article  CAS  Google Scholar 

  25. Smith CJ, Zhang Y, Koboldt CM, Muhammad J, Zweifel BS, Shaffer A et al. Pharmacological analysis of cyclooxygenase-1 in inflammation. Proc Natl Acad Sci USA 1998; 95: 13313–13318.

    Article  CAS  Google Scholar 

  26. Futaki N, Takahashi S, Yokoyama M, Arai I, Higuchi S, Otomo S . NS-398, a new anti-inflammatory agent, selectively inhibits prostaglandin G/H synthase/cyclooxygenase (COX-2) activity in vitro. Prostaglandins 1994; 47: 55–59.

    Article  CAS  Google Scholar 

  27. Ueno N, Murakami M, Tanioka T, Fujimori K, Tanabe T, Urade Y et al. Coupling between cyclooxygenase, terminal prostanoid synthase, and phospholipase A2 . J Biol Chem 2001; 276: 34918–34927.

    Article  CAS  Google Scholar 

  28. Degraeve F, Bolla M, Blaie S, Creminon C, Quere I, Boquet P et al. Modulation of COX-2 expression by statins in human aortic smooth muscle cells. Involvement of geranylgeranylated proteins. J Biol Chem 2001; 276: 46849–46855.

    Article  CAS  Google Scholar 

  29. Pouliot M, Gilbert C, Borgeat P, Poubelle PE, Bourgoin S, Creminon C et al. Expression and activity of prostaglandin endoperoxide synthase-2 in agonist-activated human neutrophils. FASEB J 1998; 12: 1109–1123.

    Article  CAS  Google Scholar 

  30. Maloney CG, Kutchera WA, Albertine KH, McIntyre TM, Prescott SM, Zimmerman GA . Inflammatory agonists induce cyclooxygenase type 2 expression by human neutrophils. J Immunol 1998; 160: 1402–1410.

    CAS  PubMed  Google Scholar 

  31. Bazan NG, Fletcher BS, Herschman HR, Mukherjee PK . Platelet-activating factor and retinoic acid synergistically activate the inducible prostaglandin synthase gene. Proc Natl Acad Sci USA 1994; 91: 5252–5256.

    Article  CAS  Google Scholar 

  32. Schneider N, Lanz S, Ramer R, Schaefer D, Goppelt-Struebe M . Up-regulation of cyclooxygenase-1 in neuroblastoma cell lines by retinoic acid and corticosteroids. J Neurochem 2001; 77: 416–424.

    Article  CAS  Google Scholar 

  33. Xu XM, Tang JL, Chen X, Wang LH, Wu KK . Involvement of two Sp1 elements in basal endothelial prostaglandin H synthase-1 promoter activity. J Biol Chem 1997; 272: 6943–6950.

    Article  CAS  Google Scholar 

  34. Khanna-Gupta A, Zibello T, Simkevich C, Rosmarin AG, Berliner N . Sp1 and C/EBP are necessary to activate the lactoferrin gene promoter during myeloid differentiation. Blood 2000; 95: 3734–3741.

    CAS  PubMed  Google Scholar 

  35. Murate T, Suzuki M, Hattori M, Takagi A, Kojima T, Tanizawa T et al. Up-regulation of acid sphingomyelinase during retinoic acid-induced myeloid differentiation of NB4, a human acute promyelocytic leukemia cell line. J Biol Chem 2002; 277: 9936–9943.

    Article  CAS  Google Scholar 

  36. Suzuki Y, Shimada J, Shudo K, Matsumura M, Crippa MP, Kojima S . Physical interaction between retinoic acid receptor and Sp1: mechanism for induction of urokinase by retinoic acid. Blood 1999; 93: 4264–4276.

    CAS  PubMed  Google Scholar 

  37. Ulich TR, Dakay EB, Williams JH, Ni RX . In vivo induction of neutrophilia, lymphopenia, and diminution of neutrophil adhesion by stable analogs of prostaglandins E1, E2, and F2 alpha. Am J Pathol 1986; 24: 53–58.

    Google Scholar 

  38. Berk LB, Patrene KD, Boggs SS . 16,16-Dimethyl prostaglandin E2 and/or syngeneic bone marrow transplantation increase mouse survival after supra-lethal total body irradiation. Int J Radiat Oncol Biol Phys 1990; 18: 1387–1392.

    Article  CAS  Google Scholar 

  39. Hanson WR, Ainsworth EJ . 16,16-Dimethyl prostaglandin E2 induces radioprotection in murine intestinal and hematopoietic stem cells. Radiat Res 1985; 103: 196–203.

    Article  CAS  Google Scholar 

  40. Pelus LM, Gold E, Saletan S, Coleman M . Restoration of responsiveness of chronic myeloid leukemia granulocyte–macrophage colony-forming cells to growth regulation in vitro following preincubation with prostaglandin E. Blood 1983; 62: 158–165.

    CAS  PubMed  Google Scholar 

  41. Dupuis F, Desplat V, Praloran V, Denizot Y . Effects of lipidic mediators on the growth of human myeloid and erythroid marrow progenitors. J Lipid Mediat Cell Signal 1997; 16: 117–125.

    Article  CAS  Google Scholar 

  42. Ruchaud S, Duprez E, Gendron MC, Houge G, Genieser HG, Jastorff B et al. Two distinctly regulated events, priming and triggering, during retinoid-induced maturation and resistance of NB4 promyelocytic leukemia cell line. Proc Natl Acad Sci USA 1994; 91: 8428–8432.

    Article  CAS  Google Scholar 

  43. Duprez E, Lillehaug JR, Naoe T, Lanotte M . cAMP signalling is decisive for recovery of nuclear bodies (PODs) during maturation of RA-resistant t(15;17) promyelocytic leukemia NB4 cells expressing PML-RAR alpha. Oncogene 1996; 12: 2451–2459.

    CAS  PubMed  Google Scholar 

  44. Quenech'Du N, Ruchaud S, Khelef N, Guiso N, Lanotte MA . Sustained increase in the endogenous level of cAMP reduces the retinoid concentration required for APL cell maturation to near physiological levels. Leukemia 1998; 12: 1829–1833.

    Article  CAS  Google Scholar 

  45. Jiang L, Foster FM, Ward P, Tasevski V, Luttrell BM, Conigrave AD . Extracellular ATP triggers cyclic AMP-dependent differentiation of HL-60 cells. Biochem Biophys Res Commun 1997; 236: 626–630.

    Article  CAS  Google Scholar 

  46. Giannì M, Terao M, Norio P, Barbui T, Rambaldi A, Garattini E . All-trans retinoic acid and cyclic adenosine monophosphate cooperate in the expression of leukocyte alkaline phosphatase in acute promyelocytic leukemia cells. Blood 1995; 85: 3619–3635.

    PubMed  Google Scholar 

  47. Ishiguro S, Takahashi N, Nemoto K, Negishi M, Ichikawa A . Potentiation of retinoic acid-induced differentiation of HL-60 cells by prostaglandin EP2 receptor. Prostaglandins Other Lipid Mediat 1998; 56: 145–153.

    Article  CAS  Google Scholar 

  48. Chen Z, Breitman TR . Effects of prostaglandin E2 and all-trans retinoic acid combination on induced differentiation of human acute promyelocytic leukemia NB4 cells. Chin Med J (Engl) 1997; 110: 783–788.

    CAS  Google Scholar 

  49. Dogne JM, Rolin S, De Leval X, Benoit P, Neven P, Delarge J et al. Pharmacology of the thromboxane receptor antagonist and thromboxane synthase inhibitor BM-531. Cardiovasc Drug Rev 2001; 19: 87–96.

    Article  CAS  Google Scholar 

  50. Kwaan HC, Wang J, Boccio LN . Abnormalities in hemostasis in acute promyelocytic leukemia. Hematol Oncol 2002; 20: 33–41.

    Article  Google Scholar 

  51. Goldschmidt N, Gural A, Yehuda DB . Extensive splenic infarction, deep vein thrombosis and pulmonary emboli complicating induction therapy with all-trans-retinoic acid (ATRA) for acute promyelocytic leukemia. Leuk Lymph 2003; 44: 1433–1437.

    Article  Google Scholar 

  52. Fontagne J, Adolphe M, Semichon M, Zizine L, Lechat P . Effect of in vitro treatment with indomethacin on mouse granulocyte–macrophage colony-forming cells in culture (CFUC). Possible role of prostaglandins. Exp Hematol 1980; 8: 1157–1164.

    CAS  PubMed  Google Scholar 

  53. Lorenz M, Slaughter HS, Wescott DM, Carter SI, Schnyder B, Dinchuk JE et al. Cyclooxygenase-2 is essential for normal recovery from 5-fluorouracil-induced myelotoxicity in mice. Exp Hematol 1999; 27: 1494–1502.

    Article  CAS  Google Scholar 

  54. Rocca B, Spain LM, Pure E, Langenbach R, Patrono C, FitzGerald GA . Distinct roles of prostaglandin H synthases 1 and 2 in T-cell development. J Clin Invest 1999; 103: 1469–1477.

    Article  CAS  Google Scholar 

  55. Kirtikara K, Morham SG, Raghow R, Laulederkind SJ, Kanekura T, Goorha S et al. Compensatory prostaglandin E2 biosynthesis in cyclooxygenase 1 or 2 null cells. J Exp Med 1998; 187: 517–523.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Professor Carlo Patrono for invaluable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Rocca.

Additional information

This work was supported by grants from the Italian Ministry of University (FIRB Grant N. RBNE01A882_005) (BR) and from the ‘Association pour la Recherche sur le Cancer’ (AH and BP) and the ‘Fondation de France’ (BP).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rocca, B., Morosetti, R., Habib, A. et al. Cyclooxygenase-1, but not -2, is upregulated in NB4 leukemic cells and human primary promyelocytic blasts during differentiation. Leukemia 18, 1373–1379 (2004). https://doi.org/10.1038/sj.leu.2403407

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403407

Keywords

This article is cited by

Search

Quick links