Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Acute promyelocytic leukemia cell line AP-1060 established as a cytokine-dependent culture from a patient clinically resistant to all-trans retinoic acid and arsenic trioxide

Abstract

AP-1060 is a newly established acute promyelocytic leukemia (APL) cell line from a multiple-relapse patient clinically resistant to both all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). The line was initially derived as a granulocyte colony-stimulating factor-dependent strain that underwent replicative senescence and, following ethylnitrosourea treatment, as a phenotypically similar immortalized line. Immortalization was associated with broadened cytokine sensitivity but not growth autonomy, in contrast to three previously derived APL lines. Both the AP-1060 strain and line had shortened telomeres and low telomerase activity, while the line had higher expression of many genes associated with macromolecular synthesis. The karyotype was 46,XY,t(3;14)(p21.1;q11.2),t(15;17)(q22;q11)[100%]; the unique t(3;14) was observed in 4/9 t(15;17)-positive metaphase cells at previous relapse on ATRA therapy. The PML-RARα mRNA harbored a missense mutation in the RARα-region ligand-binding domain (Pro900Ser). This was associated with a right-shift and sharpening of the ATRA-induced maturation response compared to ATRA-sensitive NB4 cells, which corresponded to the transcriptional activation by PML-RARαPro900Ser of a cotransfected ATRA-targeted reporter vector in COS-1 cells. AP-1060 also manifested relative resistance to ATO-induced apoptosis at 1 μ M, while 0.25 μ M ATO stimulated limited atypical maturation. These findings suggest that AP-1060 will be useful for further assessing molecular elements involved in APL progression and drug response/resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 3
Figure 2
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Griffin JD, Lowenberg B . Clonogenic cells in acute myeloblastic leukemia. Blood 1986; 68: 1185–1195.

    CAS  PubMed  Google Scholar 

  2. Curtis DJ, Mecalf D, Alexander B, Begley CG . Leukemic cells from murine myeloid leukemia display an intrinsic ability for autonomous proliferation. Exp Hematol 2000; 28: 36–45.

    Article  CAS  PubMed  Google Scholar 

  3. Ailles LE, Gerhard B, Hogge DE . Detection and characterization of primitive malignant and normal progenitors in patients with acute myelogenous leukemia using long-term coculture with supportive feeder layers and cytokines. Blood 1997; 90: 2555–2564.

    CAS  PubMed  Google Scholar 

  4. Ailles LE, Gerhard B, Kawagoe H, Hogge DE . Growth characteristics of acute myelogenous leukemia progenitors that initiate malignant hematopoiesis in nonobese diabetic/severe combined immunodeficient mice. Blood 1999; 94: 1761–1772.

    CAS  PubMed  Google Scholar 

  5. Engelhardt M, Mackenzie K, Drullinsky P, Silver RT, Moore MA . Telomerase activity and telomere length in acute and chronic leukemia, pre- and post-ex vivo culture. Cancer Res 2000; 60: 610–617.

    CAS  PubMed  Google Scholar 

  6. Buick R, Till J, McCulloch E . Colony assay for proliferative blast cells circulating in myeloblastic leukemia. Lancet 1977; I: 862–863.

    Article  Google Scholar 

  7. Dicke KA, Spitzer G, Ahearn MJ . Colony formation in vitro by leukaemic cells in acute myelogenous leukaemia with phytohaemagglutinin as stimulating factor. Nature 1976; 259: 129–130.

    Article  CAS  PubMed  Google Scholar 

  8. Moore M, Spitzer G, Williams N, Metcalf D, Buckley J . Agar culture studies in 127 cases of untreated acute leukemia: the prognostic value of reclassification of leukemia according to in vitro growth characteristics. Blood 1974; 44: 1–18.

    CAS  PubMed  Google Scholar 

  9. Collins S, Gallo R, Gallagher R . Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature 1977; 270: 347–349.

    Article  CAS  PubMed  Google Scholar 

  10. Koeffler HP, Golde DW . Acute myelogenous leukemia: a human cell line responsive to colony-stimulating activity. Science 1978; 200: 1153–1156.

    Article  CAS  PubMed  Google Scholar 

  11. Drexler HG, Zaborski M, Quentmeier H . Cytokine response profiles of human myeloid factor-dependent leukemia cell lines. Leukemia 1997; 11: 701–708.

    Article  CAS  PubMed  Google Scholar 

  12. Okuda K, Matulonis U, Salgia R, Kanakura Y, Druker B, Griffin JD . Factor independence of human myeloid leukemia cell lines is associated with increased phosphorylation of the proto-oncogene Raf-1. Exp Hematol 1994; 22: 1111–1117.

    CAS  PubMed  Google Scholar 

  13. Quentmeier H, Reinhrdt J, Zaborski M, Drexler HG . FLT3 mutations in acute myeloid leukemia cell lines. Leukemia 2003; 17: 120–124.

    Article  CAS  PubMed  Google Scholar 

  14. Turhan AG, Lemoine FM, Debert C, Bonnet ML, Baillou C, Picard F et al. Highly purified primitive hematopoietic stem cells are PML-RARA negative and generate nonclonal progenitors in acute promyelocytic leukemia. Blood 1995; 85: 2154–2161.

    CAS  PubMed  Google Scholar 

  15. Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams D, Dick J . Cytokine stimulation of multiple hematopoiesis from immature human cells engrafted in SCID mice. Science 1992; 255: 1137–1141.

    Article  CAS  PubMed  Google Scholar 

  16. Namikawa R, Ueda R, Kyoizumi S . Growth of human myeloid leukemias in the human marrow environment of SCID-hu mice. Blood 1993; 82: 2526–2536.

    CAS  PubMed  Google Scholar 

  17. Lanotte M, Martin-Thouvenin B, Najman S, Balerini P, Valensi F, Berger R . NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3). Blood 1991; 77: 1080–1086.

    CAS  PubMed  Google Scholar 

  18. Kizaki M, Matsushita H, Takayama N, Muto A, Ueno H, Awaya N et al. Establishment and characterization of a novel acute promyelocytic leukemia cell line (UF-1) with retinoic acid-resistant features. Blood 1996; 88: 1824–1833.

    CAS  PubMed  Google Scholar 

  19. Kishi K, Toba K, Azegami T, Tsukada N, Uesugi Y, Masuko M et al. Hematopoietic cytokine-dependent differentiation to eosinophils and neutrophils in a newly established acute promyelocytic leukemia cell line with t(15;17). Exp Hematol 1998; 26: 135–142.

    CAS  PubMed  Google Scholar 

  20. Iijima Y, Ito T, Oikawa T, Eguchi M, Eguchi-Ishimae M, Kamada N et al. A new ETV6/TEL partner gene, ARG (ABL-related gene or ABL2), identified in an AML-M3 cell line with a t(1;12)(q25;p13) translocation. Blood 2000; 95: 2126–2131.

    CAS  PubMed  Google Scholar 

  21. Roussel MJS, Lanotte M . Maturation sensitive and resistant t(15;17) NB4 cell lines as tools for APL physiopathology: nomenclature of cells and repertory of their known genetic alterations and phenotypes. Oncogene 2001; 20: 7287–7291.

    Article  CAS  PubMed  Google Scholar 

  22. Takayama N, Kizaki M, Hida T, Kinjo K, Ikeda Y . Novel mutation in the PML/RARalpha chimeric gene exhibits dramatically decreased ligand-binding activity and confers acquired resistance to retinoic acid in acute promyelocytic leukemia. Exp Hematol 1998; 29: 864–872.

    Article  Google Scholar 

  23. Tallman MS, Nabhan C, Feusner JH, Rowe JM . Acute promyelocytic leukemia: evolving therapeutic strategies. Blood 2002; 99: 759–767.

    Article  CAS  PubMed  Google Scholar 

  24. Zhou D-C, Kim S, Ding W, Schulz C, Warrell Jr RP, Gallagher RE . Frequent mutations in the ligand binding domain of PML-RARα after multiple relapses of acute promyelocytic leukemia: analysis for functional relationship to response to all-trans retinoic acid and histone deacetylase inhibitors in vitro and in vivo. Blood 2002; 99: 1356–1363.

    Article  CAS  PubMed  Google Scholar 

  25. Gallagher RE, Li Y-P, Rao S, Paietta E, Andersen J, Etkind P et al. Characterization of acute promyelocytic leukemia cases with PML-RARα break/fusion sites in PML exon 6: identification of a subgroup with decreased in vitro responsiveness to all-trans retinoic acid. Blood 1995; 86: 1540–1547.

    CAS  PubMed  Google Scholar 

  26. Kim NW, Wu F . Advances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol (TRAP). Nuclic Acid Res 1997; 25: 2595–2597.

    Article  CAS  Google Scholar 

  27. Albanell J, Han W, Mellado B, Gunawardane R, Scher H, Dmitrovsky E et al. Telomerase activity is repressed during differentiation of maturation-sensitive but not resistant human tumor cell lines. Cancer Res 1996; 56: 1503–1508.

    CAS  PubMed  Google Scholar 

  28. Paietta E, Andersen J, Gallagher R, Bennett J, Yunis J, Cassileth P et al. The immunophenotype of acute promyelocytic leukemia (APL): an ECOG study. Leukemia 1994; 8: 1108–1112.

    CAS  PubMed  Google Scholar 

  29. Paietta E . Expression of cell surface antigens in APL. In: Tallman MS (ed). Bailliere's Best Practice & Research: Clinical Haematology; Acute Promyelocytic Leukemia, Vol. 16. London, UK: Harcourt Publ Ltd, 2003, pp 369–385.

    Google Scholar 

  30. Darzynkiewicz Z, Juan G, Li X, Gorczyca W, Murakami T, Traganos F . Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry 1997; 27: 1–20.

    Article  CAS  PubMed  Google Scholar 

  31. Ding W, Li YP, Nobile LM, Grills G, Carrera I, Paietta E et al. Leukemic cellular retinoic acid resistance and missense mutations in the PML-RARα fusion gene after relapse of acute promyelocytic leukemia from treatment with all-trans retinoic acid and intensive chemotherapy. Blood 1998; 92: 1172–1183.

    CAS  PubMed  Google Scholar 

  32. Guidez F, Ivins S, Zhu J, Soderstrom M, Waxman S, Zelent A . Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PML- and PLZF-RARα underlie molecular pathogenesis and treatment of acute promyelocytic leukemia. Blood 1998; 91: 2634–2642.

    CAS  PubMed  Google Scholar 

  33. Cheung VG, Morley M, Aguilar F, Massimi A, Kucherlapati R, Childs G . Making and reading microarrays. Nat Genet 1999; 21: 15–19.

    Article  CAS  PubMed  Google Scholar 

  34. Mariadason JM, Arango D, Corner GA, Arnes MS, Hotchkiss KA, Yang W et al. A gene expression profile that defines colon cell maturation in vitro. Cancer Res 2002; 62: 4791–4804.

    CAS  PubMed  Google Scholar 

  35. Welte K, Platzer E, Lu L, Gabrilove JL, Levi E, Mertelsmann R et al. Purification and biochemical characterization of human pluripotent hematopoietic colony-stimulating factor. Proc Natl Acad Sci USA 1985; 82: 1526–1530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Itoh K, Tezuka H, Sakoda H, Konno M, Nagata K, Uchinyama T et al. Reproducible establishment of hemopoietic stromal cell lines from murine bone marrow. Exp Hematol 1989; 17: 145–153.

    CAS  PubMed  Google Scholar 

  37. Counter CM, Hahn WC, Wei W, Caddle SD, Beijersbergen RL, Lansdorp PM et al. Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization. Proc Natl Acad Sci USA 1998; 95: 14723–14728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pear WS, Miller JP, Xu L, Pui JC, Soffer B, Quackenbush RC et al. Efficient and rapid inducton of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 1998; 92: 3780–3792.

    CAS  PubMed  Google Scholar 

  39. Paietta E, Goloubeva O, Neuberg D, Bennett JM, Gallagher RE, Racevskis J et al. A surrogate marker profile for PML-RARα-expressing acute promyelocytic leukemia and the assoication of immunophenotypic markers with morphologic and molecular subtypes. Cytometry, in press.

  40. Paietta E . Immunobiology of acute leukemia. In: Wiernik P, Dutcher J, Goldman J, Kyle R (eds). Neoplastic Diseases of the Blood. Cambridge, UK: Cambridge University Press, 2003, 194–231.

    Google Scholar 

  41. Cowland JB, Borregaard N . The individual regulation of granule protein mRNA levels during neutrophil maturation explains the heterogeneity of neutrophil granules. J Leukoc Biol 1999; 66: 989–995.

    Article  CAS  PubMed  Google Scholar 

  42. Bainton DF . Distinct granule populations in human neutrophils and lysosomal organelles identified by immuno-electron microscopy. J Immunol Methods 1999; 232: 153–168.

    Article  CAS  PubMed  Google Scholar 

  43. Martin-Martin B, Nabokina SM, Blasi J, Lazo PA, Mollinedo F . Involvement of SNAP-23 and syntaxin 6 in neutrophil exocytosis. Blood 2000; 96: 2574–2583.

    CAS  PubMed  Google Scholar 

  44. de The H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A . The PML-RARα fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 1991; 66: 675–684.

    Article  CAS  PubMed  Google Scholar 

  45. Giguere V, Ong ES, Segui P, Evans RM . Identification of a receptor for the morphogen retinoic acid. Nature 1987; 330: 624–629.

    Article  CAS  PubMed  Google Scholar 

  46. Warrell Jr RP . Retinoid resistance in acute promyelocytic leukemia: new mechanisms, strategies and implications. Blood 1993; 82: 1949–1953.

    CAS  PubMed  Google Scholar 

  47. Kitamura K, Kiyoi H, Yoshida H, Saito H, Ohno R, Naoe T . Mutant AF-2 domain of PML-RARα in retinoic acid-resistant NB4 cells: differentiation induced by RA is triggered directly through PML-RARα and its down-reguation in acute promyelocytic leukemia. Leukemia 1997; 11: 1950–1956.

    Article  CAS  PubMed  Google Scholar 

  48. Tate BF, Grippo JF . Mutagenesis of the ligand binding domain of the human retinoic acid receptor α identifies critical residues for 9-cis-retinoic acid binding. J Biol Chem 1995; 270: 20258–20263.

    Article  CAS  PubMed  Google Scholar 

  49. Cote S, Zhou D, Bianchini A, Nervi C, Gallagher RE, Miller Jr WH . Altered ligand binding and transcriptional regulation by mutations in the PML/RARα ligand-binding domain arising in retinoic acid-resistant patients with acute promyelocytic leukemia. Blood 2000; 96: 3200–3208.

    CAS  PubMed  Google Scholar 

  50. Cai X, Yu Y, Huang Y, Zhang L, Jia P-M, Zhao Q et al. Arsenic trioxide-induced mitotic arrest and apoptosis in acute promyelocytic leukemia. Leukemia 2003; 17: 1333–1337.

    Article  CAS  PubMed  Google Scholar 

  51. Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM, Qiu QY et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 1997; 89: 3354–3360.

    CAS  PubMed  Google Scholar 

  52. Bahlis NJ, McCafferty-Grad J, Jordan-McMurry I, Neil J, Reis I, Kharfan-Dabaja M et al. Feasibility and correlates of arsenic trioxide combined with ascorbic acid-mediated depletion of intracellular glutathione for the treatment of relapsed/refractory multiple myeloma. Clin Cancer Res 2002; 8: 3658–3668.

    CAS  PubMed  Google Scholar 

  53. Soignet SL, Frankel SR, Douer D, Tallman MS, Kantarjian H, Calleja E et al. United States multicenter study of arsenic trioxide in relapsed acute promyelocytic leukemia. J Clin Oncol 2001; 19: 3852–3860.

    Article  CAS  PubMed  Google Scholar 

  54. Chen G-Q, Zhou L, Styblo M, Walton F, Jing Y, Weinberg R et al. Methylated metabolites of arsenic trioxide are more potent than arsenic trioxide as apoptotic but not differentiation inducers in leukemia and lymphoma cells. Cancer Res 2003; 63: 1853–1859.

    CAS  PubMed  Google Scholar 

  55. Chen GQ, Shi XG, Tang W, Xiong SM, Zhu J, Cai X et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood 1997; 89: 3345–3353.

    CAS  PubMed  Google Scholar 

  56. Shao W, Fanelli M, Ferrara FF, Riccioni R, Rosenauer A, Davison K et al. As2O3 induced apoptosis and loss of PML/RARα protein in both retinoid sensitive and resistant APL cells. J Natl Cancer Inst 1998; 90: 124–133.

    Article  CAS  PubMed  Google Scholar 

  57. Jing Y, Wang L, Xia L, Chen G-Q, Chen Z, Miller Jr WH et al. Combined effect of all-trans retinoic acid and arsenic trioxide in acute promyelocytic leukemia cells in vitro and in vivo. Blood 2001; 97: 264–269.

    Article  CAS  PubMed  Google Scholar 

  58. Gianni M, Koken MHM, Chelbi-Alix MK, Benoit G, Lanotte M, Chen Z et al. Combined arsenic and retinoic acid treatment enhances differentiation and apoptosis in arsenic-resistant NB4 cells. Blood 1998; 91: 4300–4310.

    CAS  PubMed  Google Scholar 

  59. Lallemand-Breitenbach V, Guillemin MC, Janin A, Daniel MT, Degos L, Kogan SC et al. Retinoic acid and arsenic synergize to eradicate leukemic cells in a mouse model of acute promyelocytic leukemia. J Exp Med 1999; 189: 1043–1052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rego EM, He LZ, Warrell Jr RP, Wang ZG, Pandolfi PP . Retinoic acid (RA) and As2O3 treatment in transgenic models of acute promyelocytic leukemia (APL) unravel the distinct nature of the leukemogenic process induced by the PML-RARalpha and PLZF-RARalpha oncoproteins. Proc Natl Acad Sci USA 2000; 97: 10173–10178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Campisi J . Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol 2001; 11: S27–S31.

    Article  CAS  PubMed  Google Scholar 

  62. Hwang ES . Replicative senescence and senescence-like state induced in cancer-derived cells. Mech Aging Devlop 2002; 123: 1681–1694.

    Article  CAS  Google Scholar 

  63. Ohtani N, Zebedee Z, Huot TJ, Stinson JA, Sugimoto M, Ohashi YS et al. Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 2001; 409: 1067–1070.

    Article  CAS  PubMed  Google Scholar 

  64. Rheinwald JG, Hahn WC, Ramsey MR, Wu JY, Guo Z, Tsao H et al. A two-stage, p16INK4A- and p53-dependent keratinocyte senescence mechanism that limits replicative potential independent of telomere status. Mol Cel Biol 2002; 22: 5157–5172.

    Article  CAS  Google Scholar 

  65. Kiyono T, Foster SA, Koop JI, McDougall JK, Galloway DA, Klingelhutz AJ . Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 1998; 396: 84–88.

    Article  CAS  PubMed  Google Scholar 

  66. Tsutsui T, Kumakura S-i, Yamamoto A, Kanai H, Tamura Y, Kato T et al. Association of p16INK4a and pRb inactivation with immortalization of human cells. Carcinogenesis 2002; 23: 2111–2117.

    Article  CAS  PubMed  Google Scholar 

  67. Iijima Y, Okuda K, Tojo A, Tri NK, Setoyama M, Sakaki Y et al. Transformation of Ba/F3 cells and Rat-1 cells by ETV6/ARG. Oncogene 2002; 21: 4374–4383.

    Article  CAS  PubMed  Google Scholar 

  68. Scheijen B, Griffin JD . Tyrosine kinase oncogenes in normal hematopoiesis and hematological disease. Oncogene 2002; 21: 3314–3333.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Michel Lanotte for providing NB4 cells, Drs Malcolm Moore and John Mori for providing MS-5 cells, Amgen, Immunex and the Genetics Institute for providing hematopoietic growth factors, Drs William Hahn and Warren Pear for providing mammalian expression vectors, Drs John Mariadason and Leonard Augenlicht, Mr Matthew Friedman and the Albert Einstein Microarray Core Laboratory for assistance with the analyses of cDNA microarray experiments, the Albert Einstein Flow Cytometry Core Laboratory for assistance with analyses of apoptosis/cell cycle experiments, and Ms Serena Mak for assistance in preparation of the manuscript figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R E Gallagher.

Additional information

Supported by grants from the National Institutes of Health (CA56771(REG) and CA73136 (RPW)) and the Leukaemia Research Fund of Great Britain (AZ).

Supplementary Information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Kim, S., Zhou, DC. et al. Acute promyelocytic leukemia cell line AP-1060 established as a cytokine-dependent culture from a patient clinically resistant to all-trans retinoic acid and arsenic trioxide. Leukemia 18, 1258–1269 (2004). https://doi.org/10.1038/sj.leu.2403372

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403372

Keywords

This article is cited by

Search

Quick links