Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Meeting Report
  • Published:

Ponte di Legno Working Group: statement on the right of children with leukemia to have full access to essential treatment and report on the Sixth International Childhood Acute Lymphoblastic Leukemia Workshop

Abstract

The Sixth International Childhood ALL Workshop was made possible by unrestricted educational grants from Sanofi-Synethelabo Inc., Glaxosmithkline, Enzon Inc., and Ilex. Preparation of the Meeting Report was supported in part by the Österreichische Kinderkrebshilfe and private donations to the Children's Cancer Research Institute; the Associazione Italiana Ricerca sul Cancro, Fondazione Tettamanti, and Consiglio Nazionale Ricerche-Ministero Instruzione Universitá Ricerca); the Deutsche Krebshilfe, Bonn, and Madeleine Schickedanz Foundation, Fürth, Germany; Cancer Research UKJ; grants from the US National Institutes of Health (CA-21765, CA-51001, CA-31566, CA-78824, CA-29139, CA-37379, GM-61393, and GM61374), a Center of Excellence grant from the State of Tennessee, and the American Lebanese Syrian Associated Charities (ALSAC). C-H Pui is the American Cancer Society – FM Kirby Clinical Research Professor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Schrappe M, Camitta B, Pui CH, Eden T, Gaynon P, Gustafsson G et al. Long-term results of large prospective trials in childhood acute lymphoblastic leukemia. Leukemia 2000; 14: 2193–2194.

    Article  CAS  PubMed  Google Scholar 

  2. Pui C-H, Ribeiro RC . International collaboration on childhood leukemia. Int J Hematol 2003; 78: 383–389.

    Article  PubMed  Google Scholar 

  3. Conter V, Aricò M, Valsecchi MG, Basso G, Biondi A, Madon E et al. Long-term results of the Italian Association of Pediatric Hematology and Oncology (AIEOP) acute lymphoblastic leukemia studies, 1982–1995. Leukemia 2000; 14: 2196–2204.

    Article  CAS  PubMed  Google Scholar 

  4. Schrappe M, Reiter A, Zimmermann M, Harbott J, Ludwig WD, Henze G et al. Long-term results of four consecutives trials in childhood ALL performed by the ALL-BFM study group from 1981 to 1995. Leukemia 2000; 14: 2205–2222.

    Article  CAS  PubMed  Google Scholar 

  5. Gaynon PS, Trigg ME, Heerema NA, Sensel MG, Sather HN, Hammond GD et al. Children's Cancer Group trials in childhood acute lymphoblastic leukemia: 1983–1995. Leukemia 2000; 14: 2223–2233.

    Article  CAS  PubMed  Google Scholar 

  6. Harms DO, Janka-Schaub GE . Co-operative study group for childhood acute lymphoblastic leukemia (COALL): long-term follow-up of trials 82, 85, 89 and 92. Leukemia 2000; 14: 2234–2239.

    Article  CAS  PubMed  Google Scholar 

  7. Kamps WA, Veerman AJ, van Wering ER, van Weerden JF, Slater R, van der Does-van den Berg A . Long-term follow-up of Dutch Childhood Leukemia Study Group (DCLSG) protocols for children with acute lymphoblastic leukemia, 1984–1991. Leukemia 2000; 14: 2240–2246.

    Article  CAS  PubMed  Google Scholar 

  8. Silverman LB, Declerck L, Gelber RD, Kimball Dalton V, Asselin BL, Barr RD et al. Results of Dana-Farber Cancer Institute Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1981–1995). Leukemia 2000; 14: 2247–2256.

    Article  CAS  PubMed  Google Scholar 

  9. Vilmer E, Suciu S, Ferster A, Bertrand Y, Cave H, Thyss A et al. Long-term results of three randomized trials (58831, 58832, 58881) in childhood acute lymphoblastic leukemia: a CLCG-EORTC report. Leukemia 2000; 14: 2257–2266.

    Article  CAS  PubMed  Google Scholar 

  10. Gustafsson G, Schmiegelow K, Forestier E, Clausen N, Glomstein A, Jonmundsson G et al. Improving outcome through two decades in childhood ALL in the Nordic countries: the impact of high-dose methotrexate in the reduction of CNS irradiation. Leukemia 2000; 14: 2267–2275.

    Article  CAS  PubMed  Google Scholar 

  11. Maloney KW, Shuster JJ, Murphy S, Pullen J, Camitta BA . Long-term results of treatment studies for childhood acute lymphoblastic leukemia: Pediatric Oncology Group studies from 1986–1994. Leukemia 2000; 14: 2276–2285.

    Article  CAS  PubMed  Google Scholar 

  12. Pui C-H, Boyett JM, Rivera GK, Hancock ML, Sandlund JT, Ribeiro RC et al. Long-term results of Total Therapy studies 11, 12 and 13A for childhood acute lymphoblastic leukemia at St Jude Children's Research Hospital. Leukemia 2000; 14: 2286–2294.

    Article  CAS  PubMed  Google Scholar 

  13. Tsuchida M, Ikuta K, Hanada R, Saito T, Isoyama K, Sugita K et al. Long-term follow-up of childhood acute lymphoblastic leukemia in Tokyo Children's Cancer Study Group 1981–1995. Leukemia 2000; 14: 2295–2306.

    Article  CAS  PubMed  Google Scholar 

  14. Eden OB, Harrison G, Richards S, Lilleyman JS, Bailey CC, Chessells JM et al. Long-term follow-up of the United Kingdom Medical Research Council protocols for childhood acute lymphoblastic leukaemia, 1980–1997. Leukemia 2000; 14: 2307–2320.

    Article  CAS  PubMed  Google Scholar 

  15. Aricò M, Valsecchi MG, Camitta B, Schrappe M, Chessells J, Baruchel A et al. Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med 2000; 342: 998–1006.

    Article  PubMed  Google Scholar 

  16. Heerema NA, Harbott J, Galimberti S, Valsecchi MG, Camitta BM, Gaynon PS et al. Secondary cytogenetic aberrations in childhood Philadelphia chromosome positive acute lymphoblastic leukemia are non-random and may be associated with outcome. Leukemia, 2004; 18: 693–702.

    Article  CAS  PubMed  Google Scholar 

  17. Pui CH, Gaynon PS, Boyett JM, Chessells JM, Baruchel A, Kamps W et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet 2002; 359: 1909–1915.

    Article  PubMed  Google Scholar 

  18. Pui CH, Chessell JM, Camitta B, Baruchel A, Biondi A, Boyett JM et al. Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia 2003; 17: 700–706.

    Article  CAS  PubMed  Google Scholar 

  19. Pui CH, Evans WE, Gilbert JR . Meeting report: International Childhood ALL Workshop: Memphis, TN, 3–4 December 1997. Leukemia 1998; 12: 1313–1318.

    Article  CAS  PubMed  Google Scholar 

  20. Pui CH, Sallan S, Relling MV, Masera G, Evans WE . International Childhood Acute Lymphoblastic Leukemia Workshop: Sausalito, CA, 30 November–1 December 2000. Leukemia 2001; 15: 707–715.

    Article  CAS  PubMed  Google Scholar 

  21. Gadner H, Haas OA, Masera G, Pui CH, Schrappe M . ‘Ponte di Legno’ Working Group – report on the Fifth International Childhood Acute Lymphoblastic Leukemia Workshop: Vienna, Austria, 9 April–May 2002. Leukemia 2003; 17: 798–803.

    Article  CAS  PubMed  Google Scholar 

  22. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM et al. Acitivity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2001; 344: 1038–1042.

    Article  CAS  PubMed  Google Scholar 

  23. Ottmann OG, Druker BJ, Sawyers CL, Goldman JM, Reiffers J, Silver RT et al. A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias. Blood 2002; 100: 1965–1971.

    Article  CAS  PubMed  Google Scholar 

  24. Scheuring UJ, Pfeifer H, Wassmann B, Brück P, Atta J, Petershofen EK et al. Early minimal residual disease (MRD) analysis during treatment of Philadelphia chromosome/Bcr-Abl-positive acute lymphoblastic leukemia with the Abl-tyrosine kinase inhibitor imatinib (STI571). Blood 2003; 101: 85–90.

    Article  CAS  PubMed  Google Scholar 

  25. Wassmann B, Pfeifer H, Scheuring U, Klein SA, Gökbuget N, Binckebanck A et al. Therapy with imatinib mesylate (Glivec) preceding allogeneic stem cell transplantation (SCT) in relapsed or refractory Philadelphia-positive acute lymphoblastic leukemia (Ph+ALL). Leukemia 2002; 16: 2358–2365.

    Article  CAS  PubMed  Google Scholar 

  26. Wassmann B, Scheuring U, Pfeifer H, Binckebanck A, Käbisch A, Lübbert M et al. Efficacy and safety of imatinib mesylate (Glivec™) in combination with interferon-α (IFN-α) in Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ALL). Leukemia 2003; 17: 1919–1924.

    Article  CAS  PubMed  Google Scholar 

  27. Lee S, Kim DW, Kim YJ, Chung NG, Kim YL, Hwang JY et al. Minimal residual disease-based role of imatinib as a first-line interim therapy prior to allogeneic stem cell transplantation in Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 2003; 102: 3068–3070.

    Article  CAS  PubMed  Google Scholar 

  28. Shimoni A, Kröger N, Zander AR, Rowe JM, Hardan I, Avigdor A et al. Imatinib mesylate (STI571) in preparation for allogeneic hematopoietic stem cell transplantation and donor lymphocyte infusions in patients with Philadelphia-positive acute leukemias. Leukemia 2003; 17: 290–297.

    Article  CAS  PubMed  Google Scholar 

  29. Schrappe M, Aricò M, Harbott J, Biondi A, Zimmermann M, Conter V et al. Philadelphia chromosome-positive (Ph+) childhood acute lymphoblastic leukemia: good initial steroid response allows early prediction of a favorable treatment outcome. Blood 1998; 92: 2730–2741.

    CAS  PubMed  Google Scholar 

  30. Cazzaniga G, Lanciotti M, Rossi V, Di Martino D, Aricò M, Valescchi MG et al. Prospective molecular monitoring of BCR/ABL transcript in children with Ph+ acute lymphoblastic leukaemia unravels differences in treatment response. Br J Haematol 2002; 119: 445–453.

    Article  CAS  PubMed  Google Scholar 

  31. Ribeiro RC, Broniscer A, Rivera GK, Hancock ML, Raimondi SC, Sandlund JT et al. Philadelphia chromosome-positive acute lymphoblastic leukemia in children: durable responses to chemotherapy associated with low initial white blood cell counts. Leukemia 1997; 11: 1493–1496.

    Article  CAS  PubMed  Google Scholar 

  32. Hofmann WK, de Vos S, Elashoff D, Gschaidmeier H, Hoelzer D, Koeffler HP et al. Relation between resistance of Philadelphia-chromosome-positive acute lymphoblastic leukaemia to the tyrosine kinase inhibitor STI571 and gene-expression profiles: a gene-expression study. Lancet 2002; 359: 481–486.

    Article  CAS  PubMed  Google Scholar 

  33. Scrideli CA, Cazzaniga G, Fazio G, Pirola L, Callegaro A, Bassan R et al. Gene expression profile unravels significant differences between childhood and adult Ph+ acute lymphoblastic leukemia. Leukemia 2003; 17: 2234–2237.

    Article  CAS  PubMed  Google Scholar 

  34. Fine BM, Stanulla M, Schrappe M, Ho M, Viehmann S, Harbott J et al. Gene expression patterns associated with recurrent chromosomal translocations in acute lymphoblastic leukemia. Blood 2004; 103: 1043–1049.

    Article  CAS  PubMed  Google Scholar 

  35. Biondi A, Cimino G, Pieters R, Pui CH . Biological and therapeutic aspects of infant leukemia. Blood 2000; 96: 24–33.

    CAS  PubMed  Google Scholar 

  36. Ramakers-van Woerden NL, Pieters R, Rots MG, van Zantwijk CH, Noordhuis P, Beverloo HB et al. Infants with acute lymphoblastic leukemia: no evidence for high methotrexate resistance. Leukemia 2002; 16: 949–951.

    Article  CAS  PubMed  Google Scholar 

  37. Dreyer ZE, Steuber CP, Bowman WP, Murray JC, Coppes MJ, Dinndorf P et al. High risk infant ALL-improved survival with intensive chemotherapy. Proc Am Soc Clin Oncol 1998; 17: 529a.

    Google Scholar 

  38. Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002; 1: 133–143.

    Article  CAS  PubMed  Google Scholar 

  39. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41–47.

    Article  CAS  PubMed  Google Scholar 

  40. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1: 75–87.

    Article  CAS  PubMed  Google Scholar 

  41. Cheok MH, Yang W, Pui CH, Downing JR, Cheng C, Naeve CW et al. Treatment-specific changes in gene expression discriminate in vivo drug response in human leukemia cells. Nat Genet 2003; 34: 85–90, (erratum in Nat Genet 2003; 34 : 231).

    Article  CAS  PubMed  Google Scholar 

  42. Armstrong SA, Kung AL, Mabon ME, Silverman LB, Stam RW, den Boer ML et al. Inhibition of FLT3 in MLL. Validation of a therapeutic target identification by gene expression based classification. Cancer Cell 2003; 3: 173–183.

    Article  CAS  PubMed  Google Scholar 

  43. Staal FJT, van der Burg M, Wessels LFA, Barendregt BH, Baert MRM, van den Burg CMM et al. DNA microarrays for comparison of gene expression profiles between diagnosis and relapse in precursor-B acute lymphoblastic leukemia: choice of technique and purification influence the identification of potential diagnostic markers. Leukemia 2003; 17: 1324–1332.

    Article  CAS  PubMed  Google Scholar 

  44. Kohlmann A, Schoch C, Schnittger S, Dugas M, Hiddemann W, Kern W et al. Pediatric acute lymphoblastic leukemia (ALL) gene expression signatures classify an independent cohort of adult ALL patients. Leukemia 2004; 18: 63–71.

    Article  CAS  PubMed  Google Scholar 

  45. Pui CH, Carroll AJ, Raimondi SC, Land VJ, Crist WM, Shuster JJ et al. Clinical presentation, karyotypic characterization, and treatment outcome of childhood acute lymphoblastic leukemia with a near-haploid or hypodiploid <45 line. Blood 1990; 75: 1170–1177.

    CAS  PubMed  Google Scholar 

  46. Heerema NA, Nachman JB, Sather HN, Sensel MG, Lee MK, Hutchinson R et al. Hypodiploidy with less than 45 chromosomes confers adverse risk in childhood acute lymphoblastic leukemia: a report from the Children's Cancer Group. Blood 1999; 94: 4036–4045.

    CAS  PubMed  Google Scholar 

  47. Mikhail FM, Serry KA, Hatem N, Mourad ZI, Farawela HM, EI Kaffash DM et al. AML1 gene over-expression in childhood acute lymphoblastic leukemia. Leukemia 2002; 16: 658–668.

    Article  CAS  PubMed  Google Scholar 

  48. Harewood L, Robinson H, Harris R, Jabbar Al-Obaidi M, Jalali GR, Martineau M et al. Amplification of AML1 on a duplicated chromosome 21 in acute lymphoblastic leukemia: a study of 20 cases. Leukemia 2003; 17: 547–553.

    Article  CAS  PubMed  Google Scholar 

  49. Robinson HM, Broadfield ZJ, Cheung KL, Harewood L, Harris RL, Jalali GR et al. Amplification of AML1 in acute lymphoblastic leukemia is associated with a poor outcome. Leukemia 2003; 17: 2249–2250.

    Article  CAS  PubMed  Google Scholar 

  50. Pui CH, Relling MV, Downing JR . Acute lymphoblastic leukemia. N Engl J Med, (in press).

  51. Schrappe M, Reiter A, Ludwig WD, Harbott J, Zimmermann M, Hiddemann W et al. Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: results of trial ALL-BFM 90. Blood 2000; 95: 3310–3322.

    CAS  PubMed  Google Scholar 

  52. Pui CH, Sandlund JT, Pei D, Rivera GK, Howard SC, Ribeiro RC et al. Results of therapy for acute lymphoblastic leukemia in black and white children. JAMA 2003; 290: 2001–2007.

    Article  CAS  PubMed  Google Scholar 

  53. Pui CH . Recent advances in childhood acute lymphoblastic leukemia. J Formos Med Assoc, (in press).

  54. Secker-Walker LM, Berger R, Fenaux P, Lai JL, Nelken B, Garson M et al. Prognostic significance of the balanced t(1;19) and unbalanced der(19)t(1;19) translocations in acute lymphoblastic leukemia. Leukemia 1992; 6: 363–369.

    CAS  PubMed  Google Scholar 

  55. Pui CH, Raimondi SC, Hancock ML, Rivera GK, Ribeiro RC, Mahmoud HH et al. Immunologic, cytogenetic, and clinical characterization of childhood acute lymphoblastic leukemia with the t(1;19)(q23;p13) or its derivative. J Clin Oncol 1994; 12: 2601–2606.

    Article  CAS  PubMed  Google Scholar 

  56. Uckun FM, Sensel MG, Sather HN, Gaynon PS, Arthur DC, Lange BJ et al. Clinical significance of translocation t(1;19) in childhood acute lymphoblastic leukemia in the context of contemporary therapies: a report from the Children's Cancer Group. J Clin Oncol 1998; 16: 527–535.

    Article  CAS  PubMed  Google Scholar 

  57. Greaves MF, Wiemels J . Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer 2003; 3: 639–649.

    Article  CAS  PubMed  Google Scholar 

  58. Wiemels JL, Leonard BC, Wang Y, Segal MR, Hunger SP, Smith MT et al. Site-specific translocation and evidence of post-natal origin of the t(1;19) E2A-PBX1 translocation in childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA 2002; 99: 15101–15106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Loh ML, Rubnitz JE . TEL/AML1-positive pediatric leukemia: prognostic significance and therapeutic approaches. Curr Opin Hematol 2002; 9: 345–352.

    Article  PubMed  Google Scholar 

  60. Szczepañski T, Orfão A, van der Velden VHJ, San Miguel JF, van Dongen JJM . Minimal residual disease in leukaemia patients. Lancet Oncol 2001; 2: 409–417.

    Article  PubMed  Google Scholar 

  61. Pui CH, Campana D, Evans WE . Childhood acute lymphoblastic leukaemia – current status and future perspectives. Lancet Oncol 2001; 2: 597–607.

    Article  CAS  PubMed  Google Scholar 

  62. Borowitz MJ, Pullen DJ, Shuster JJ, Viswanatha D, Montgomery K, Willman CL et al. Minimal residual disease detection in childhood precursor-B-cell acute lymphoblastic leukemia: relation to other risk factors. A Children's Oncology Group study. Leukemia 2003; 17: 1566–1572.

    Article  CAS  PubMed  Google Scholar 

  63. Konrad M, Metzler M, Panzer S, Streicher I, Peham M, Repp R et al. Late relapses evolve from slow-responding subclones in t(12;21)-positive acute lymphoblastic leukemia: evidence for the persistence of a preleukemic clone. Blood 2003; 101: 3635–3640.

    Article  CAS  PubMed  Google Scholar 

  64. Harris MB, Shuster JJ, Carroll A, Look AT, Borowitz MJ, Crist WM et al. Trisomy of leukemic cell chromosomes 4 and 10 identifies children with B-progenitor cell acute lymphoblastic leukemia with a very low risk of treatment failure: a Pediatric Oncology Group study. Blood 1992; 79: 3316–3324.

    CAS  PubMed  Google Scholar 

  65. Heerema NA, Sather HN, Sensel MG, Zhang T, Hutchinson RJ, Nachman JB et al. Prognostic impact of trisomies of chromosomes 10, 17, and 5 among children with acute lymphoblastic leukemia and high hyperdiploidy (>50 chromosomes). J Clin Oncol 2000; 18: 1876–1887.

    Article  CAS  PubMed  Google Scholar 

  66. Hann I, Vora A, Harrison G, Harrison C, Eden O, Hill F et al. Determinants of outcome after intensified therapy of childhood lymphoblastic leukaemia: results from Medical Research Council United Kingdom acute lymphoblastic leukaemia XI protocol. Br J Haematol 2001; 113: 103–114, (erratum in Br J Haematol 2001; 113 : 844; Br J Haematol 2001; 114 : 738).

    Article  CAS  PubMed  Google Scholar 

  67. Moorman AV, Richards SM, Martineau M, Cheung KL, Robinson HM, Jalali GR et al. Outcome heterogeneity in childhood high-hyperdiploid acute lymphoblastic leukemia. Blood 2003; 102: 2756–2762.

    Article  CAS  PubMed  Google Scholar 

  68. Steenbergen EJ, Verhagen OJ, van Leeuwen EF, van den Berg H, Behrendt H, Slater RM et al. Prolonged persistence of PCR-detectable minimal residual disease after diagnosis or first relapse predicts poor outcome in childhood B-precursor acute lymphoblastic leukaemia. Leukemia 1995; 9: 1726–1734.

    CAS  PubMed  Google Scholar 

  69. Eckert C, Biondi A, Seeger K, Cazzaniga G, Hartmann R, Beyermann B et al. Prognostic value of minimal residual disease in relapsed childhood acute lymphoblastic leukaemia. Lancet 2001; 358: 1239–1241.

    Article  CAS  PubMed  Google Scholar 

  70. Coustan-Smith E, Gajjar A, Hijiya N, Razzouk BI, Ribeiro RC, Rivera GK et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia after first relapse. Leukemia 2004; 18: 499–504.

    Article  CAS  PubMed  Google Scholar 

  71. Henze G, von Stackelberg A . Treatment of relapsed acute lymphoblastic leukemia. In Pui CH (ed). Treatment of Acute Leukemias: New Directions for Clinical Research. Current Clinical Oncology. Totowa, NJ: Humana, 2003, pp 199–219.

    Google Scholar 

  72. Knechtli CJ, Goulden NJ, Hancock JP, Grandage VL, Harris EL, Garland RJ et al. Minimal residual disease status before allogeneic bone marrow transplantation is an important determinant of successful outcome for children and adolescents with acute lymphoblastic leukemia. Blood 1998; 92: 4072–4079.

    CAS  PubMed  Google Scholar 

  73. van der Velden VH, Joosten SA, Willemse MJ, van Wering ER, Lankester AW, van Dongen JJ et al. Real-time quantitative PCR for detection of minimal residual disease before allogeneic stem cell transplantation predicts outcome in children with acute lymphoblastic leukemia. Leukemia 2001; 15: 1485–1487.

    Article  CAS  PubMed  Google Scholar 

  74. Bader P, Hancock J, Kreyenberg H, Goulden NJ, Niethammer D, Oakhill A et al. Minimal residual disease (MRD) status prior to allogeneic stem cell transplantation is a powerful predictor for post-transplant outcome in children with ALL. Leukemia 2002; 16: 1668–1672.

    Article  CAS  PubMed  Google Scholar 

  75. Goulden N, Bader P, Van der Velden V, Moppett J, Schilham M, Masden HO et al. Minimal residual disease prior to stem cell transplant for childhood acute lymphoblastic leukaemia. Br J Haematol 2003; 122: 24–29.

    Article  PubMed  Google Scholar 

  76. Leung W, Iyengar R, Turner V, Lang P, Bader P, Conn P et al. Determinants of antileukemia effects of allogeneic NK cells. J Immunol 2004; 172: 644–650.

    Article  CAS  PubMed  Google Scholar 

  77. Lawson SE, Harrison G, Richards S, Oakhill A, Stevens R, Eden OB et al. The UK experience in treating relapsed childhood acute lymphoblastic leukaemia: a report on the Medical Research Council UKALLR1 study. Br J Haematol 2000; 108: 531–543.

    Article  CAS  PubMed  Google Scholar 

  78. Harrison G, Richards S, Lawson S, Darbyshire P, Pinkerton R, Stevens R et al. Comparison of allogeneic transplant vs chemotherapy for relapsed childhood acute lymphoblastic leukaemia in the MRC UKALL R1 trial. MRC Childhood Leukaemia Working Party. Ann Oncol 2000; 11: 999–1006.

    Article  CAS  PubMed  Google Scholar 

  79. Abshire TC, Pollock BH, Billett AL, Bradley P, Buchanan GR . Weekly polyethylene glycol conjugated L-asparaginase compared with biweekly dosing produces superior induction remission rates in childhood relapsed acute lymphoblastic leukemia: a Pediatric Oncology Group Study. Blood 2000; 96: 1709–1715.

    CAS  PubMed  Google Scholar 

  80. Carnahan J, Wang P, Kendall R, Chen C, Hu S, Boone T et al. Epratuzumab, a humanized monoclonal antibody targeting CD22: characterization of in vitro properties. Clin Cancer Res 2003; 9: 3982S–3990S.

    CAS  PubMed  Google Scholar 

  81. Leonard JP, Link BK . Immunotherapy of non-Hodgkin's lymphoma with hLL2 (epratuzumab, an anti-CD22 monoclonal antibody) and Hu1D10 (apolizumab). Semin Oncol 2002; 29 (1 Suppl. 2): 81–86.

    Article  CAS  PubMed  Google Scholar 

  82. Hak LJ, Relling MV, Cheng C, Pei D, Wang B, Sandlund JT et al. Asparaginase pharmacodynamics differ by formulation among children with newly diagnosed acute lymphoblastic leukemia. Leukemia, [Epub ahead of print] April 1, 2004.

  83. Armstrong SA, Golub TR, Korsmeyer SJ . MLL-rearranged leukemias: insights from gene expression profiling. Semin Hematol 2003; 40: 268–273.

    Article  CAS  PubMed  Google Scholar 

  84. Levis M, Small D . FLT3: it does matter in leukemia. Leukemia 2003; 17: 1738–1752.

    Article  CAS  PubMed  Google Scholar 

  85. Winther JF, Sankila R, Boice JD, Tulinius H, Bautz A, Barlow L et al. Cancer in siblings of children with cancer in the Nordic countries: a population-based cohort study. Lancet 2001; 358: 711–717.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C-H Pui.

Additional information

Participating groups/institutions (participants): Associazione Italiana di Ematologia ed Oncologia Pediatrica (M Aricò, G Basso, A Biondi, V Conter, G Masera, G Tognoni, MG Valsecchi), Berlin–Frankfurt–Münster Group (G Cario, H Gadner, O Hass, J Harbott, R Panzer, H Riehm, M Schrappe, A Stackelberg, M Stanulla, M Zimmermann), Children's Oncology Group (B Camitta, W Carroll, P Gaynon, S Hunger, J Nachman, K Schultz, N Winick), Cooperative Acute Lymphoblastic Leukemia Study Group (M Horstmann, G Janka-Schaub), Czech Pediatric Hematology (J Stary, J Trka), Dana-Farber Cancer Institute (S Sallan, L Silverman), Dutch Childhood Oncology Group (R Pieters, A Veerman), European Organization for Research and Treatment of Cancer – Childhood Leukemia Cooperative Group (Y Bertrand, S Suciu), French Acute Lymphoblastic Leukemia Study Group (G Leverger), Japan Association of Childhood Leukemia Study (K Horibe), Medical Research Council, United Kingdom Acute Lymphoblastic Leukemia (OB Eden, C Harrison), Nordic Society of Pediatric Haematology and Oncology (E Forestier, K Schmiegelow, K Vettenranta), St Jude Children's Research Hospital (D Campana, E Coustan-Smith, WE Evans, R Handgretinger, C-H Pui, MV Relling), Taiwan Pediatric Oncology Group (D-C Liang), Tokyo Children's Cancer Study Group (A Manabe, M Tsuchida); guest: D Pinkel

Appendix A:

Appendix A:

Position paper/statement by members of the Ponte di Legno group on the right of children with leukemia to have full access to essential treatment for acute lymphoblastic leukemia

Improved outcome of childhood ALL, the most common cancer in children, is one of the greatest successes in modern medicine. The approach taken to improve dramatically the cure rate involved the combination of clinical and basic research, mostly conducted with public funds, and intensive collaboration of cooperative groups. As a result, the cure rate has improved from 3% in the 1960s to 75–80% currently in developed countries. We believe that this improved possibility of survival should be considered among a fundamental right of affected children. Providing access to the necessary diagnostic and therapeutic resources to children afflicted with leukemia should be a priority for those who play a role in the relevant areas of medicine and health.

The physicians, clinical investigators, and basic scientists who have signed this statement have been responsible for transforming ALL into a model disease for which there is hope of cure when optimal treatment is accessible. These professionals are fully aware that their successes have also widened the gap of inequality between children living in the resource-rich countries and those living in low-income countries (LICs). Most children live in LICs; hence, most patients with ALL reside in these countries and are subjected to an increased risk of possibly avoidable death.

As citizens, doctors, and researchers, we feel an urgent priority to correct this inequality in ALL treatment. The following is a summary of short- and medium-term plans in this regard:

The first and most rapidly achievable goal is the recognition by international agencies and by concerned regulatory authorities that the treatment protocols and guidelines developed for children with ALL are essential. In this regard, antileukemic drugs used in these protocols should be qualified as essential.

Certain centers or groups of excellence should be developed in LICs. Our experience in various LICs has shown that the efficacy and safety of chemotherapy can be ensured in centers and by groups who are trained and motivated to adopt policies of high-quality ALL care, which include the use of well-designed protocols.

On the basis of concepts and strategies developed for use in other disease areas (from tuberculosis to AIDS), we recommend broadening the scope of the ‘essential drugs list’ and documenting not only the selection and use of drugs but also the implementation of the treatment strategy.

In this framework in which the fundamental rights of children are the reference value, we commit our groups to support strongly all activities toward this goal; we request the recognition by WHO and other concerned national and international agencies that the care of children with ALL (as well as other curable cancers) is essential; we advocate a price policy for drugs used in the protocols; the purpose of the policy will be to diminish substantially the treatment barrier of high drug costs; we recommend that the national authorities support the centers where the staffs are committed to ‘essential protocols’ and that national authorities document compliance with these protocols.

We are aware that the resource allocation for ALL does not currently coincide with public health priority. However, we are convinced – and supported by our experiences – that ALL is a model of all curable cancers; expanding efforts in treatment of ALL in LICs will result in the mobilization of important new energies, stimulation of imaginative solutions, enrichment of motivations, and broadening of public awareness. We emphasize that a policy of drastic cost-cutting in ALL treatment is feasible for two main reasons (besides and beyond any ethical consideration): (1) the market implications are minimal, because the size of the patient population is relatively small; and (2) there will be no risk of misdirection or mismanagement of drugs as they become available, because their use will be accounted for by the centers who are committed to documenting compliance through registration of all patients enrolled on treatment protocols.

All subscribers to this memorandum, representing the majority of the Childhood Leukemia Treatment Consortia, herewith emphasize the right of all children in the world to full access to the essential treatment of ALL and other cancers, and call upon all authorities concerned to recognize and support all measures that promote this right to a chance of cure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pui, CH., Schrappe, M., Masera, G. et al. Ponte di Legno Working Group: statement on the right of children with leukemia to have full access to essential treatment and report on the Sixth International Childhood Acute Lymphoblastic Leukemia Workshop. Leukemia 18, 1043–1053 (2004). https://doi.org/10.1038/sj.leu.2403365

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403365

Keywords

This article is cited by

Search

Quick links