Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Crosstalk between angiogenesis and lymphangiogenesis in tumor progression

Abstract

Extensive studies have identified reliable markers of lymphatic endothelial cells, and mechanisms and molecules that regulate development and growth of the lymphatic vessels. Vascular endothelial growth factors (VEGF)-C and VEGF-D, and their cognate receptor tyrosine kinase, VEGF receptor-3 (VEGFR-3), are critical regulators of lymphangiogenesis. By binding to its endothelial cell surface receptors VEGFR-1 and VEGFR-2, VEGF-A mediates vascular leakage, endothelial proliferation and migration. Angiopoietin-2 (Ang-2) is expressed at sites of blood vessel remodeling and invasion, and factors that induce angiogenesis in vivo, such as VEGF-A, upregulate Ang-2 in endothelial cells. In this review, we summarize the literature concerning the crosstalk between angiogenesis and lymphangiogenesis in tumor progression, that is, involvement of VEGF-C, VEGF-D and VEGFR-3 in angiogenesis, and the role played by VEGF-A and Ang-2 in lymphangiogenesis, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 1996; 15: 290–298.

    Article  CAS  Google Scholar 

  2. Heldin CH, Ostman A, Westermark B . Structure of platelet-derived growth factor: implications for functional properties. Growth Factors 1993; 8: 245–252.

    Article  CAS  Google Scholar 

  3. Enholm B, Karpanen T, Jeltssch M, Kubo H, Stenback F, Prevo R et al. Adenoviral expression of vascular endothelial growth factor C induces lymphangiogenesis in the skin. Circ Res 2001; 88: 623–629.

    Article  CAS  Google Scholar 

  4. Jeltsch M, Kaipanen A, Joukov V, Meng X, Lakso M, Rauvala H et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 1997; 276: 1423–1425.

    Article  CAS  Google Scholar 

  5. Veikkola T, Jussila L, Makinen T, Karpanen T, Jeltsch M, Petrova TV et al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J 2001; 20: 1223–1231.

    Article  CAS  Google Scholar 

  6. Joukov V, Sorsa T, Kumar V, Jeltsch M, Claesson-Welsh L, Cao Y et al. Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J 1997; 16: 3898–3911.

    Article  CAS  Google Scholar 

  7. Ristimaki A, Narko K, Enholm B, Joukov V, Alitalo K . Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J Biol Chem 1998; 273: 8413–8418.

    Article  CAS  Google Scholar 

  8. Narko K, Enholm B, Makinen T, Ristimaki A . Effect of inflammatory cytokines on the expression of the vascular endothelial growth factor-C. Int J Exp Pathol 1999; 80: 109–112.

    Article  CAS  Google Scholar 

  9. Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T, Pajusola K et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 1998; 282: 946–949.

    Article  CAS  Google Scholar 

  10. Witzenbichler B, Asahara T, Murohara T, Silver M, Spyridopoulos I, Magner M et al. Vascular endothelial growth factor-C (VEGF-C/VEGF-2) promotes angiogenesis in the setting of tissue ischemia. Am J Pathol 1998; 153: 381–394.

    Article  CAS  Google Scholar 

  11. Partanen TA, Arola J, Saaristo Jussila L, Ora A, Miettinen M, Stacker SA et al. VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor, VEGFR-3, in fenestrated blood vessels in human tissues. FASEB J 2000; 14: 2087–2097.

    Article  CAS  Google Scholar 

  12. Salven P, Mustjokis S, Alitalo R, Alitalo K, Rafii S . VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood 2003; 101: 168–172.

    Article  CAS  Google Scholar 

  13. Makinen T, Veikkola T, Mustjoki S, Karpanen T, Catimel B, Nice EC et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J 2001; 20: 4762–4773.

    Article  CAS  Google Scholar 

  14. Valtola R, Salven P, Heikkila P, Taipale J, Jonsuu H, Rehn M et al. VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am J Pathol 1999; 154: 1381–1390.

    Article  CAS  Google Scholar 

  15. Paavonen K, Poulakkanien P, Jusilla L, Jahkola T, Alitalo K . Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. Am J Pathol 2000; 156: 1499–1504.

    Article  CAS  Google Scholar 

  16. Partanen TA, Alitalo K, Miettinen M . Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors. Cancer 1999; 86: 2406–2412.

    Article  CAS  Google Scholar 

  17. Kubo H, Fujiwara T, Jussila L, Hashi H, Ogawa M, Shimizu K et al. Involvement of vascular endothelial growth factor receptor-3 in maintenance of integrity of endothelial cell lining during tumor angiogenesis. Blood 2000; 96: 546–553.

    CAS  PubMed  Google Scholar 

  18. Hamada K, Oike Y, Takakura N, Ito Y, Jussila L, Dumont DJ et al. VEGF-C signaling pathways through VEGFR-2 and VEGFR-3 in vasculoangiogenesis and hematopoiesis. Blood 2000; 96: 3793–3800.

    CAS  Google Scholar 

  19. Saaristo A, Veikkola T, Enholm B, Hytonen M, Arola J, Pajusola K et al. Adenoviral VEGF-C overexpression induces blood vessel enlargement, tortuosity, and leakiness but no sprouting angiogenesis in the skin or mucous membranes. FASEB J 2002; 16: 1041–1049.

    Article  CAS  Google Scholar 

  20. Orlandini M, Marconcini L, Ferruzzi R, Oliviero S . Identification of a c-fos-induced gene that is related to the platelet-derived growth factor/vascular endothelial growth factor family. Proc Natl Acad Sci USA 1996; 93: 11675–11680.

    Article  CAS  Google Scholar 

  21. Achen MG, Jeltsch M, Kukk E, Mäkinen T, Vitali A, Wilks AF et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk-1) and VEGF receptor 3 (Flt-4). Proc Natl Acad Sci USA 1998; 95: 548–553.

    Article  CAS  Google Scholar 

  22. Stacker S, Caesar C, Baldwin M, Thornton G, Williams R, Prevo R et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 2001; 7: 186–191.

    Article  CAS  Google Scholar 

  23. Marconcini L, Marchio S, Morbidelli L, Cartocci E, Albini A, Ziche M et al. C-fos-induced growth factor/vascular endothelial growth factor D induces angiogenesis in vivo and in vitro. Proc Natl Acad Sci USA 1999; 96: 9671–9676.

    Article  CAS  Google Scholar 

  24. Byzova TV, Goldman CK, Jankau J, Chen J, Cabrera G, Achen MG et al. Adenovirus encoding vascular endothelial growth factor-D induces tissue-specific vascular patterns in vivo. Blood 2002; 99: 4434–4442.

    Article  CAS  Google Scholar 

  25. Pepper MS . Lymphangiogenesis and tumor metastasis. Myth or reality? Clin Canc Res 2001; 7: 462–468.

    CAS  Google Scholar 

  26. Bunone G, Vigneri P, Mariani L, Buto S, Collini P, Pilotti S et al. Expression of angiogenesis stimulators and inhibitors in human thyroid tumors and correlation with clinical-pathologic features. Am J Pathol 1999; 155: 1967–1976.

    Article  CAS  Google Scholar 

  27. Tsurusaki T, Kanda S, Sakai H, Kanetake H, Saito Y, Alitalo K et al. Vascular endothelial growth factor-C expression in human prostatic carcinoma and its relationship to lymph node metastasis. Br J Cancer 1999; 80: 309–313.

    Article  CAS  Google Scholar 

  28. Yonemura Y, Endo Y, Fujita H, Fushida S, Ninomiya I, Bandou E et al. Role of vascular endothelial growth factor C expression in the development of lymph node metastasis in gastric cancer. Clin Cancer Res 1999; 5: 1823–1829.

    CAS  PubMed  Google Scholar 

  29. Akagi K, Ikeda Y, Miyazaki M, Abe T, Kinoshita J, Maehara Y et al. Vascular endothelial growth factor-C (VEGF-C) expression in human colorectal cancer tissues. Br J Cancer 2000; 83: 887–891.

    Article  CAS  Google Scholar 

  30. Niki T, Iba S, Tokunou M, Yamada T, Matsuno Y, Hirohashi S . Expression of vascular endothelial growth factors A, B, C, and D and their relationships to lymph node status in lung adenocarcinoma. Clin Cancer Res 2000; 6: 2431–2439.

    CAS  PubMed  Google Scholar 

  31. Ohta Y, Nozawa H, Tanaka Y, Oda M, Watanabe Y . Increased vascular endothelial growth factor and vascular endothelial growth factor-c and decreased nm23 expression associated with microdissemination in the lymph nodes in stage I non-small cell lung cancer. J Thorac Cardiovasc Surg 2000; 119: 804–813.

    Article  CAS  Google Scholar 

  32. Hashimoto I, Kodama J, Seki N, Hongo A, Yoshinouchi M, Okuda H et al. Vascular endothelial growth factor-C expression and its relationship to pelvic lymph node status in invasive cervical cancer. Br J Cancer 2001; 85: 93–97.

    Article  CAS  Google Scholar 

  33. Kitadai Y, Amioka T, Haruma K, Tanaka S, Yoshihara M, Sumii K et al. Clinicopathological significance of vascular endothelial growth factor (VEGF)-C in human esophageal squamous cell carcinomas. Int J Cancer 2001; 93: 662–666.

    Article  CAS  Google Scholar 

  34. Schoppmann SF, Birner P, Studer P, Breiteneder-Geleff S . Lymphatic microvessel density and lymphovascular invasion assessed by anti-podoplanin immunostaining in human breast cancer. Anticancer Res 2001; 21: 2351–2355.

    CAS  PubMed  Google Scholar 

  35. Nakashima T, Kondoh S, Kitoh H, Ozawa H, Okita S, Harada T et al. Vascular endothelial growth factor-C expression in human gallbladder cancer and its relationship to lymph node metastasis. Int J Mol Med 2003; 11: 33–39.

    CAS  PubMed  Google Scholar 

  36. Schietroma C, Cianfarani F, Lacal PM, Odorisio T, Orecchia A, Kanitakis J et al. Vascular endothelial growth factor-C expression correlates with lymph node localization of human melanoma metastases. Cancer 2003; 98: 789–797.

    Article  CAS  Google Scholar 

  37. Ohta Y, Shridhar V, Bright RK, Kalemkerian GP, Du W, Carbone M et al. VEGF and VEGF type C play an important role in angiogenesis and lymphangiogenesis in human malignant mesothelioma tumours. Br J Cancer 1999; 81: 54–61.

    Article  CAS  Google Scholar 

  38. Yonemura Y, Fushida S, Bando E, Kinoshita K, Miwa K, Endo Y et al. Lymphangiogenesis and the vascular endothelial growth factor receptor (VEGFR)-3 in gastric cancer. Eur J Cancer 2001; 37: 918–923.

    Article  CAS  Google Scholar 

  39. Amioka T, Kitadai Y, Tanaka S, Haruma K, Yoshihara M, Yasui W et al. Vascular endothelial growth factor-C expression predicts lymph node metastasis of human gastric carcinomas invading the submucosa. Eur J Cancer 2002; 38: 1413–1419.

    Article  CAS  Google Scholar 

  40. Achen MG, Williams RA, Baldwin ME, Lai P, Roufail S, Alitalo K et al. The angiogenic and lymphangiogenic factor vascular endothelial growth factor-D exhibits a paracrine mode of action in cancer. Growth Factors 2002; 20: 99–107.

    Article  CAS  Google Scholar 

  41. Nagy JA, Vasile E, Feng D, Sundberg C, Brown LF, Detmar MJ et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med 2002; 196: 1497–1506.

    Article  CAS  Google Scholar 

  42. Carmeliet P, Jain RK . Angiogenesis in cancer and other diseases. Nature 2000; 407: 249–257.

    Article  CAS  Google Scholar 

  43. Petterson A, Nagy JA, Brown LF, Sundberg C, Morgan E, Jungles S et al. Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab Invest 2000; 80: 99–115.

    Article  Google Scholar 

  44. Sundberg C, Nagy JA, Brown LF, Feng D, Ecklelhoefer IA, Manseau EJ et al. Glomeruloid microvascular proliferation follows adenoviral vascular permeability factor/vascular endothelial growth factor-164 gene delivery. Am J Pathol 2001; 158: 1145–1160.

    Article  CAS  Google Scholar 

  45. Skobe M, Detmar M . Structure, function, and molecular control of the skin lymphatic system. J Invest Dermatol Symp Proc 2000; 5: 14–19.

    Article  CAS  Google Scholar 

  46. Feng D, Nagy JA, Brekken RA, Petterson A, Manseau EJ, Pyne K et al. Ultrastructural localization of the vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) receptor-2 (Flk-1, KDR) in normal mouse kidney and in the hyperpermeable vessels induced by VPF/VEGF- expressing tumors and adenoviral vectors. J Histochem Cytochem 2000; 48: 545–556.

    Article  CAS  Google Scholar 

  47. Luttan A, Tjwa M, Moons L, Wu Y, Angelillo-Scherrer A, Liao F et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt-1. Nat Med 2002; 8: 831–840.

    Article  Google Scholar 

  48. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor by secretion–trap expression cloning. Cell 1996; 87: 1161–1169.

    Article  CAS  Google Scholar 

  49. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C et al. Angiopoietin-2, a natural antagonist for Tie 2 that disrupts in vivo angiogenesis. Science 1997; 277: 55–60.

    Article  CAS  Google Scholar 

  50. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D et al. Vessel cooption, regression and growth in tumors mediated by angiopoietins and VEGF. Science 1999; 284: 1994–1998.

    Article  CAS  Google Scholar 

  51. Veikkola T, Lohela M, Ikenberg K, Makinen T, Korff T, Saaristo A et al. Intrinsic versus microenvironmental regulation of lymphatic endothelial cell phenotype and function. FASEB J 2003; 17: 2006–2013.

    Article  CAS  Google Scholar 

  52. Gale NW, Thurston G, Hackett SF, Renard R, Wang Q, Mc Clain J et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Dev Cell 2002; 3: 411–423.

    Article  CAS  Google Scholar 

  53. Kriehuber E, Breiteneder-Geleff S, Groeger M, Soleiman A, Schoppmann SF, Stingl G et al. Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med 2001; 194: 797–808.

    Article  CAS  Google Scholar 

  54. Makinen T, Jussila L, Veikkola T, Karpanen T, Kettunen MI, Pulkkanen KJ et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med 2001; 7: 199–205.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Ministry for Education, the University and Research (MIUR, Interuniversity Funds for Basic Research (FIRB, Rome), Associazione Italiana per la Ricerca sul Cancro (AIRC, Milan) and Fondazione Italiana per la Lotta al Neuroblastoma (Genoa, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Ribatti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scavelli, C., Vacca, A., Di Pietro, G. et al. Crosstalk between angiogenesis and lymphangiogenesis in tumor progression. Leukemia 18, 1054–1058 (2004). https://doi.org/10.1038/sj.leu.2403355

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403355

Keywords

This article is cited by

Search

Quick links