Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Growth autonomy and lineage switching in BCR-ABL-transduced human cord blood cells depend on different functional domains of BCR-ABL

Abstract

The tyrosine kinase activity of p210BCR-ABL is essential to its leukemogenic potential, but the role of other functional domains in primary human hematopoietic cells has not been previously investigated. Here we show that infection of normal human CD34+ cord blood (CB) cells with a retroviral vector encoding p210BCR-ABL rapidly activates a factor-independent phenotype and autocrine interleukin-3/granulocyte colony-stimulating factor/erythropoietin production in the transduced cells. These changes are characteristic of primitive chronic myeloid leukemic (CML) cells and are important to the leukemogenicity of BCR-ABL-transduced murine hematopoietic stem cells. When BCR-ABL-transduced human CB cells were incubated with imatinib mesylate, an inhibitor of the p210BCR-ABL kinase, or when human CB cells were transduced with a BCR-ABL cDNA lacking the SH2 domain (p210ΔSH2), factor independence was significantly reduced. In contrast, deletion of the SH2 domain had little impact on the p210BCR-ABL kinase-dependent promotion of erythropoietic differentiation also seen immediately following the BCR-ABL transduction of primitive human CB cells, but not in naturally occurring CML. Thus, p210BCR-ABL has distinct biological effects in primary human hematopoietic cells, which variably mimic features of human CML, and activation of these changes can show different dependencies on the integrity of the SH1 and SH2 domains of p210BCR-ABL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Deininger MWN, Goldman JM, Melo JV . The molecular biology of chronic myeloid leukemia. Blood 2000; 96: 3343–3356.

    CAS  PubMed  Google Scholar 

  2. Ben-Neriah Y, Daley GQ, Mes-Masson AM, Witte ON, Baltimore D . The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science 1986; 233: 212–214.

    Article  CAS  PubMed  Google Scholar 

  3. Konopka JB, Witte ON . Detection of c-abl tyrosine kinase activity in vitro permits direct comparison of normal and altered abl gene products. Mol Cell Biol 1985; 5: 3116–3123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Van Etten RA, Jackson P, Baltimore D . The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization. Cell 1989; 58: 669–678.

    Article  CAS  PubMed  Google Scholar 

  5. Daley GQ, Van Etten RA, Baltimore D . Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990; 247: 824–830.

    Article  CAS  PubMed  Google Scholar 

  6. Heisterkamp N, Jenster G, ten Hoeve J, Zovich D, Pattengale PK, Groffen J . Acute leukemia in bcr/abl transgenic mice. Nature 1990; 344: 251–253.

    Article  CAS  PubMed  Google Scholar 

  7. Lugo TG, Pendergast AM, Muller AJ, Witte ON . Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 1990; 247: 1079–1082.

    Article  CAS  PubMed  Google Scholar 

  8. Evans CA, Owen-Lynch J, Whetton AD, Dive C . Activation of the Abelson tyrosine kinase activity is associated with suppression of apoptosis in hemopoietic cells. Cancer Res 1993; 53: 1735–1738.

    CAS  PubMed  Google Scholar 

  9. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996; 2: 561–566.

    Article  CAS  PubMed  Google Scholar 

  10. Vigneri P, Wang JYJ . Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase. Nat Med 2001; 7: 228–234.

    Article  CAS  PubMed  Google Scholar 

  11. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1031–1037.

    Article  CAS  PubMed  Google Scholar 

  12. Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 2002; 346: 645–652.

    Article  CAS  PubMed  Google Scholar 

  13. Hughes TP, Kaeda J, Branford S, Rudzki Z, Hochhaus A, Hensley ML et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 2003; 349: 1423–1432.

    Article  CAS  PubMed  Google Scholar 

  14. Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, Choi JK et al. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J 1997; 16: 6151–6161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roumiantsev S, de Aos IE, Varticovski L, Ilaria RL, Van Etten RA . The src homology 2 domain of Bcr/Abl is required for efficient induction of chronic myeloid leukemia-like disease in mice but not for lymphoid leukemogenesis or activation of phosphatidylinositol 3-kinase. Blood 2001; 97: 4–13.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang X, Wong R, Hao SX, Pear WS, Ren R . The SH2 domain of Bcr-Abl is not required to induce a murine myeloproliferative disease; however, SH2 signaling influences disease latency and phenotype. Blood 2001; 97: 277–287.

    Article  CAS  PubMed  Google Scholar 

  17. Eaves AC, Eaves CJ . Abnormalities in the erythroid progenitor compartments in patients with chronic myelogenous leukemia (CML). Exp Hematol 1979; 7: 65–75.

    PubMed  Google Scholar 

  18. Strife A, Lambek C, Wisniewski D, Wachter M, Gulati SC, Clarkson BD . Discordant maturation as the primary biological defect in chronic myelogenous leukemia. Cancer Res 1988; 48: 1035–1041.

    CAS  PubMed  Google Scholar 

  19. Bedi A, Zehnbauer BA, Barber J, Sharkis S, Jones R . Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia. Blood 1994; 83: 2038–2044.

    CAS  PubMed  Google Scholar 

  20. Maguer-Satta V, Burl S, Liu L, Damen J, Chahine H, Krystal G et al. BCR-ABL accelerates C2-ceramide-induced apoptosis. Oncogene 1998; 16: 237–248.

    Article  CAS  PubMed  Google Scholar 

  21. Jiang X, Lopez A, Holyoake T, Eaves A, Eaves C . Autocrine production and action of IL-3 and granulocyte colony-stimulating factor in chronic myeloid leukemia. Proc Natl Acad Sci USA 1999; 96: 12804–12809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hariharan IK, Adams JM, Cory S . BCR-ABL oncogene renders myeloid cell line factor independent: potential autocrine mechanism in chronic myeloid leukemia. Oncogene Res 1988; 3: 387–399.

    CAS  PubMed  Google Scholar 

  23. Sirard C, Laneuville P, Dick J . Expression of bcr-abl abrogates factor-dependent growth of human hematopoietic M07E cells by an autocrine mechanism. Blood 1994; 83: 1575–1585.

    CAS  PubMed  Google Scholar 

  24. Anderson SM, Mladenovic J . The BCR-ABL oncogene requires both kinase activity and src-homology 2 domain to induce cytokine secretion. Blood 1996; 87: 238–244.

    CAS  PubMed  Google Scholar 

  25. Zhang X, Ren R . BCR-ABL efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte–macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia. Blood 1998; 92: 3829–3840.

    CAS  PubMed  Google Scholar 

  26. Li S, Ilaria RL, Million RP, Daley GQ, Van Etten RA . The p190, p210, and p230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J Exp Med 1999; 189: 1399–1412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jiang X, Ng E, Yip C, Eisterer W, Chalandon Y, Stuible M et al. Primitive interleukin 3 null hematopoietic cells transduced with BCR-ABL show accelerated loss after culture of factor-independence in vitro and leukemogenic activity in vivo. Blood 2002; 100: 3731–3740.

    Article  CAS  PubMed  Google Scholar 

  28. Peters DG, Klucher KM, Perlingeiro RC, Dessain SK, Koh EY, Daley GQ . Autocrine and paracrine effects of an ES-cell derived, BCR/ABL-transformed hematopoietic cell line that induces leukemia in mice. Oncogene 2001; 20: 2636–2646.

    Article  CAS  PubMed  Google Scholar 

  29. Li S, Gillessen S, Tomasson MH, Dranoff G, Gilliland DG, Van Etten RA . Interleukin 3 and granulocyte–macrophage colony-stimulating factor are not required for induction of chronic myeloid leukemia-like myeloproliferative disease in mice by BCR/ABL. Blood 2001; 97: 1442–1450.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao RC, Jiang Y, Verfaillie CM . A model of human p210bcr/ABL mediated CML by transducing primary normal human CD34+ cells with a BCR/ABL containing retroviral vector. Blood 2001; 97: 2406–2412.

    Article  CAS  PubMed  Google Scholar 

  31. Chalandon Y, Jiang X, Hazelwood G, Loutet S, Conneally E, Eaves A et al. Modulation of p210BCR-ABL activity in transduced primary human hematopoietic cells controls lineage reprogramming. Blood 2002; 99: 3197–3204.

    Article  CAS  PubMed  Google Scholar 

  32. Kinsella TM, Nolan GP . Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum Gene Ther 1996; 7: 1405–1413.

    Article  CAS  PubMed  Google Scholar 

  33. Pear WS, Nolan GP, Scott ML, Baltimore D . Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci USA 1993; 90: 8392–8396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lansdorp PM, Dragowska W . Long-term erythropoiesis from constant numbers of CD34+ cells in serum-free cultures initiated with highly purified progenitor cells from human bone marrow. J Exp Med 1992; 175: 1501–1509.

    Article  CAS  PubMed  Google Scholar 

  35. Maguer-Satta V, Petzer AL, Eaves AC, Eaves CJ . BCR-ABL expression in different subpopulations of functionally characterized Ph+ CD34+ cells from patients with chronic myeloid leukemia. Blood 1996; 88: 1796–1804.

    CAS  PubMed  Google Scholar 

  36. Ilaria Jr RL, Van Etten RA . The SH2 domain of P210BCR/ABL is not required for the transformation of hematopoietic factor-dependent cells. Blood 1995; 86: 3897–3904.

    PubMed  Google Scholar 

  37. Oda T, Tamura S, Matsuguchi T, Griffin JD, Druker BJ . The SH2 domain of Abl is not required for factor-independent growth induced by Bcr-Abl in a murine myeloid cell line. Leukemia 1995; 9: 295–301.

    CAS  PubMed  Google Scholar 

  38. Lozzio BB, Lozzio CB, Bamberger EG, Feliu AS . A multipotential leukemia cell line (K-562) of human origin. Proc Soc Exp Biol Med 1981; 166: 546–550.

    Article  CAS  PubMed  Google Scholar 

  39. McWhirter JR, Wang JYJ . An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias. EMBO J 1993; 12: 1533–1546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Goga A, McLaughlin J, Afar DEH, Saffran DC, Witte ON . Alternative signals to RAS for hematopoietic transformation by the BCR-ABL oncogene. Cell 1995; 82: 981–988.

    Article  CAS  PubMed  Google Scholar 

  41. Jiang X, Stuible M, Chalandon Y, Li A, Chan WY, Eisterer W et al. Evidence for a positive role of SHIP in the BCR-ABL-mediated transformation of primitive murine hematopoietic cells and in human chronic myeloid leukemia. Blood 2003; 102: 2976–2984.

    Article  CAS  PubMed  Google Scholar 

  42. Issaad C, Vainchenker W . Growth of erythroid colonies in chronic myelogenous leukemia is independent of erythropoietin only in the presence of steel factor. Blood 1994; 84: 3447–3456.

    CAS  PubMed  Google Scholar 

  43. Stopka T, Zivny JH, Stopkova P, Prchal JF, Prchal JT . Human hematopoietic progenitors express erythropoietin. Blood 1998; 91: 3766–3772.

    CAS  PubMed  Google Scholar 

  44. Ghaffari S, Wu H, Gerlach M, Han Y, Lodish HF, Daley GQ . BCR-ABL and v-SRC tyrosine kinase oncoproteins support normal erythroid development in erythropoietin receptor-deficient progenitor cells. Proc Natl Acad Sci USA 1999; 96: 13186–13190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lopez AF, To LB, Yang YC, Gamble JR, Shannon MF, Burns GF et al. Stimulation of proliferation, differentiation, and function of human cells by primate interleukin 3. Proc Natl Acad Sci USA 1987; 84: 2761–2765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Souza LM, Boone TC, Gabrilove J, Lai PH, Zsebo KM, Murdock DC et al. Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells. Science 1986; 232: 61–65.

    Article  CAS  PubMed  Google Scholar 

  47. Graber SE, Krantz SB . Erythropoietin and the control of red cell production. Annu Rev Med 1978; 29: 51–66.

    Article  CAS  PubMed  Google Scholar 

  48. Pharr PN, Ogawa M, Hofbauer A, Longmore GD . Expression of an activated erythropoietin or a colony-stimulating factor 1 receptor by pluripotent progenitors enhances colony formation but does not induce differentiation. Proc Natl Acad Sci USA 1994; 91: 7482–7486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Socolovsky M, Lodish HF, Daley GQ . Control of hematopoietic differentiation: lack of specificity in signaling by cytokine receptors. Proc Natl Acad Sci USA 1998; 95: 6573–6575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Metcalf D . Lineage commitment and maturation in hematopoietic cells: the case for extrinsic regulation. Blood 1998; 92: 345–348.

    CAS  PubMed  Google Scholar 

  51. Hogge DE, Lansdorp PM, Reid D, Gerhard B, Eaves CJ . Enhanced detection, maintenance and differentiation of primitive human hematopoietic cells in cultures containing murine fibroblasts engineered to produce human Steel factor, interleukin-3 and granulocyte colony-stimulating factor. Blood 1996; 88: 3765–3773.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the Stem Cell Assay Service of the Terry Fox Laboratory for initial cell processing, members of the Flow Cytometry Service for cell sorting, R Van Etten (Center for Blood Research, Boston, MA, USA) for the BCR-ABLΔSH2 cDNA, K Humphries and P Lansdorp (both from the Terry Fox Laboratory) for other cDNA probes and antibodies, and StemCell, Novartis, Cangene and Immunex for gifts of recombinant growth factors and other reagents, and R Premji for assistance in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C J Eaves.

Additional information

Supported by grants from the National Cancer Institute of Canada with funds from the Canadian Cancer Society and the Terry Fox Run and a grant from Genome BC. Y Chalandon was supported by a Terwindt Foundation Fellowship and S Loutet held a British Columbia Cancer Foundation Summer Studentship

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chalandon, Y., Jiang, X., Loutet, S. et al. Growth autonomy and lineage switching in BCR-ABL-transduced human cord blood cells depend on different functional domains of BCR-ABL. Leukemia 18, 1006–1012 (2004). https://doi.org/10.1038/sj.leu.2403335

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403335

Keywords

This article is cited by

Search

Quick links