Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Bone marrow endothelial cells increase the invasiveness of human multiple myeloma cells through upregulation of MMP-9: evidence for a role of hepatocyte growth factor

Abstract

The migration of multiple myeloma (MM) cells from the circulation into the bone marrow (BM) implicates that they must have the capacity to cross the BM endothelium including the subendothelial basement membrane. In this study, human CD138+ MM cells were immunomagnetically isolated from BM samples of MM patients and their invasion through Matrigel, that is, a reconstituted basement membrane, was determined. We demonstrated that primary MM cells have the capacity to transmigrate through basement membrane and that this invasiveness was considerably increased when assessed on Matrigel filters coated with BM endothelial cells (EC) (4LHBMEC line) (transendothelial invasion). The isolated MM cells were shown by zymography to secrete matrix metalloproteinase (MMP)-9 and anti-MMP-9 antibodies inhibited transendothelial invasion, indicating that MMP-9 is involved in this process. BM EC were found to increase the MMP-9 secretion in MM cells, indicating that EC enhance MM cell invasion through stimulation of MMP-9 secretion. BM EC were found to produce hepatocyte growth factor (HGF), and this cytokine also stimulated MMP-9 secretion in MM cells, while anti-HGF antibodies significantly inhibited EC-stimulated MM cell invasion. In summary, our findings provide evidence that MM cell–BM EC interactions enhance the invasion of human MM cells through stimulation of MMP-9 secretion.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Van Riet I . Homing mechanisms of myeloma cells. Pathol Biol (Paris) 1999; 47: 98–108.

    CAS  Google Scholar 

  2. Butcher EC, Picker LJ . Lymphocyte homing and homeostasis. Science 1996; 272: 60–66.

    Article  CAS  PubMed  Google Scholar 

  3. Laurie GW, Leblond CP, Martin GR . Localization of type IV collagen, laminin, heparan sulfate proteoglycan and fibronectin to the basal lamina of basement membranes. J Cell Biol 1982; 95: 340–344.

    Article  CAS  PubMed  Google Scholar 

  4. Goetzl EJ, Banda MJ, Leppert D . Matrix metalloproteinases in immunity. J Immunol 1996; 156: 1–4.

    CAS  PubMed  Google Scholar 

  5. Xia M, Leppert D, Hauser SL, Sreedharan SP, Nelson PJ, Krensky AM et al. Stimulus specificity of matrix metalloproteinase dependence of human T cell migration through a model basement membrane. J Immunol 1996; 156: 160–167.

    CAS  PubMed  Google Scholar 

  6. Delclaux C, Delacourt C, D'Ortho MP, Boyer V, Lafuma C, Harf A . Role of gelatinase B and elastase in human polymorphonuclear neutrophil migration across basement membrane. Am J Respir Cell Mol Biol 1996; 14: 288–295.

    Article  CAS  PubMed  Google Scholar 

  7. Birkedal-Hansen H . Proteolytic remodeling of extracellular matrix. Curr Opin Cell Biol 1995; 7: 728–735.

    Article  CAS  PubMed  Google Scholar 

  8. Emonard H, Grimaud JA . Matrix metalloproteinases A review. Cell Mol Biol 1992; 36: 131–153.

    Google Scholar 

  9. MacDougall JR, Matrisian LM . Contributions of tumor and stromal matrix metalloproteinases to tumor progression, invasion and metastasis. Cancer Metast Rev 1995; 14: 351–362.

    Article  CAS  Google Scholar 

  10. Coussens LM, Werb Z . Matrix metalloproteinases and the development of cancer. Chem Biol 1996; 3: 895–904.

    Article  CAS  PubMed  Google Scholar 

  11. Kossakowska AE, Hinek A, Edwards DR, Lim MS, Zhang CL, Breitman DR et al. Proteolytic activity of human non-Hodgkin's lymphomas. Am J Pathol 1998; 152: 565–576.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Murphy G, McAlpine CG, Poll CT, Reynolds JJ . Purification and characterization of a bone metalloproteinase that degrades gelatin and types IV and V collagen. Biochim Biophys Acta 1985; 831: 49–58.

    Article  CAS  PubMed  Google Scholar 

  13. Barille S, Akhoundi C, Collette M, Mellerin MP, Rapp MJ, Harousseau JL et al. Metalloproteinases in multiple myeloma: production of matrix metalloproteinase-9 (MMP-9), activation of proMMP-2, and induction of MMP-1 by myeloma cells. Blood 1997; 90: 1649–1655.

    CAS  PubMed  Google Scholar 

  14. Van Valckenborgh E, Bakkus M, Munaut C, Noel A, St Pierre Y, Asosingh K et al. Upregulation of matrix metalloproteinase-9 in murine 5T33 multiple myeloma cells by interaction with bone marrow endothelial cells. Int J Cancer 2002; 101: 512–518.

    Article  CAS  PubMed  Google Scholar 

  15. Westermarck J, Kahari VM . Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 1999; 13: 781–792.

    Article  CAS  PubMed  Google Scholar 

  16. Benbow U, Schoenermark MP, Mitchell TI, Rutter JL, Shimokawa K, Nagase H et al. A novel host/tumor cell interaction activates matrix metalloproteinase 1 and mediates invasion through type I collagen. J Biol Chem 1999; 274: 25371–25378.

    Article  CAS  PubMed  Google Scholar 

  17. Martorana AM, Zheng G, Crowe TC, O'Grady RL, Lyons JG . Epithelial cells up-regulate matrix metalloproteinases in cells within the same mammary carcinoma that have undergone an epithelial–mesenchymal transition. Cancer Res 1998; 58: 4970–4979.

    CAS  PubMed  Google Scholar 

  18. Kermorgant S, Aparicio T, Dessirier V, Lewin MJ, Lehy T . Hepatocyte growth factor induces colonic cancer cell invasiveness via enhanced motility and protease overproduction. Evidence for PI3 kinase and PKC involvement. Carcinogenesis 2001; 22: 1035–1042.

    Article  CAS  PubMed  Google Scholar 

  19. Jiang Y, Xu W, Lu J, He F, Yang X . Invasiveness of hepatocellular carcinoma cell lines: contribution of hepatocyte growth factor, c-met, and transcription factor Ets-1. Biochem Biophys Res Commun 2001; 286: 1123–1130.

    Article  CAS  PubMed  Google Scholar 

  20. Monvoisin A, Bisson C, Si-Tayeb K, Balabaud C, Desmouliere A, Rosenbaum J . Involvement of matrix metalloproteinase type-3 in hepatocyte growth factor-induced invasion of human hepatocellular carcinoma cells. Int J Cancer 2002; 97: 157–162.

    Article  CAS  PubMed  Google Scholar 

  21. Harvey P, Clark IM, Jaurand MC, Warn RM, Edwards DR . Hepatocyte growth factor/scatter factor enhances the invasion of mesothelioma cell lines and the expression of matrix metalloproteinases. Br J Cancer 2000; 83: 1147–1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakamura T, Nawa K, Ichihara A . Partial purification and characterization of hepatocyte growth factor from serum of hepatectomized rats. Biochem Biophys Res Commun 1984; 122: 1450–1459.

    Article  CAS  PubMed  Google Scholar 

  23. Matsumoto K, Nakamura T . Emerging multipotent aspects of hepatocyte growth factor. J Biochem 1996; 119: 591–600.

    Article  CAS  PubMed  Google Scholar 

  24. Bussolino F, Di Renzo MF, Ziche M, Bocchietto E, Olivero M, Naldini L et al. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol 1992; 119: 629–641.

    Article  CAS  PubMed  Google Scholar 

  25. Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 1991; 251: 802–804.

    Article  CAS  PubMed  Google Scholar 

  26. Jiang W, Hiscox S, Matsumoto K, Nakamura T . Hepatocyte growth factor/scatter factor, its molecular, cellular and clinical implications in cancer. Crit Rev Oncol Hematol 1999; 29: 209–248.

    Article  CAS  PubMed  Google Scholar 

  27. Ueki T, Fujimoto J, Suzuki T, Yamamoto H, Okamoto E . Expression of hepatocyte growth factor and its receptor, the c-met proto-oncogene, in hepatocellular carcinoma. Hepatology 1997; 25: 619–623.

    Article  CAS  PubMed  Google Scholar 

  28. Natali PG, Prat M, Nicotra MR, Bigotti A, Olivero M, Comoglio PM et al. Overexpression of the met/HGF receptor in renal cell carcinomas. Int J Cancer 1996; 69: 212–217.

    Article  CAS  PubMed  Google Scholar 

  29. Borset M, Lien E, Espevik T, Helseth E, Waage A, Sundan A . Concomitant expression of hepatocyte growth factor/scatter factor and the receptor c-Met in human myeloma cell lines. J Biol Chem 1996; 271: 24655–24661.

    Article  CAS  PubMed  Google Scholar 

  30. Borset M, Hjorth-Hansen H, Seidel C, Sundan A, Waage A . Hepatocyte growth factor and its receptor c-met in multiple myeloma. Blood 1996; 88: 3998–4004.

    CAS  PubMed  Google Scholar 

  31. Seidel C, Borset M, Turesson I, Abildgaard N, Sundan A, Waage A . Elevated serum concentrations of hepatocyte growth factor in patients with multiple myeloma. The Nordic Myeloma Study Group. Blood 1998; 91: 806–812.

    CAS  Google Scholar 

  32. Hjertner O, Torgersen ML, Seidel C, Hjorth-Hansen H, Waage A, Borset M et al. Hepatocyte growth factor (HGF) induces interleukin-11 secretion from osteoblasts: a possible role for HGF in myeloma-associated osteolytic bone disease. Blood 1999; 94: 3883–3888.

    CAS  PubMed  Google Scholar 

  33. Sezer O, Jakob C, Eucker J, Niemoller K, Gatz F, Wernecke K et al. Serum levels of the angiogenic cytokines basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) in multiple myeloma. Eur J Haematol 2001; 66: 83–88.

    Article  CAS  PubMed  Google Scholar 

  34. Durie BG, Salmon SE . A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer 1975; 36: 842–854.

    Article  CAS  PubMed  Google Scholar 

  35. Heussen C, Dowdle EB . Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem 1980; 102: 196–202.

    Article  CAS  PubMed  Google Scholar 

  36. Morodomi T, Ogata Y, Sasaguri Y, Morimatsu M, Nagase H . Purification and characterization of matrix metalloproteinase 9 from U937 monocytic leukaemia and HT1080 fibrosarcoma cells. Biochem J 1992; 285: 603–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kleinman HK, McGarvey ML, Hassell JR, Star VL, Cannon FB, Laurie GW et al. Basement membrane complexes with biological activity. Biochemistry 1986; 25: 312–318.

    Article  CAS  PubMed  Google Scholar 

  38. Albini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, Kozlowski JM et al. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 1987; 47: 3239–3245.

    CAS  PubMed  Google Scholar 

  39. Vanderkerken K, De Greef C, Asosingh K, Arteta B, De Veerman M, Vande Broek I, Van Riet I et al. Selective initial in vivo homing pattern of 5T2 multiple myeloma cells in the C57BL/KalwRij mouse. Br J Cancer 2000; 82: 953–959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vande Broek I, Asosingh K, Vanderkerken K, Straetmans N, Van Camp B, Van Riet I . Chemokine receptor CCR2 is expressed by human multiple myeloma cells and mediates migration to bone marrow stromal cell-produced monocyte chemotactic proteins MCP-1, -2 and -3. Br J Cancer 2003; 88: 855–862.

    Article  CAS  PubMed  Google Scholar 

  41. Vande Broek I, Vanderkerken K, Asosingh K, De Greef C, Van Camp B, Van Riet I . Laminin-1 induced migration of multiple myeloma cells involves the high affinity 67kD laminin receptor. Br J Cancer 2001; 85: 1387–1395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Asosingh K, Menu E, Van Valckenborgh E, Vande Broek I, Van Riet I, Van Camp B et al. Mechanisms involved in the differential bone marrow homing of CD45 subsets in 5 T murine models of myeloma. Clin Exp Metastasis 2002; 19: 583–591.

    Article  CAS  PubMed  Google Scholar 

  43. Nakamura T . Structure and function of hepatocyte growth factor. Prog Growth Factor Res 1991; 3: 67–85.

    Article  CAS  PubMed  Google Scholar 

  44. Derksen PW, de Gorter DJ, Meijer HP, Bende RJ, van Dijk M, Lokhorst HM et al. The hepatocyte growth factor/Met pathway controls proliferation and apoptosis in multiple myeloma. Leukemia 2003; 17: 764–774.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Nicole Arras for excellent technical assistance. We also thank Dr R Schots and Dr F Trullemans (Department of Medical Oncology and Hematology, Academic Hospital, Vrije Universiteit Brussel (VUB) for their contribution to the collection of the BM samples and Dr A Dräger (Vrije Universiteit Amsterdam, The Netherlands) for generously providing the 4LHBMEC cell line. This work was supported by grants of the Fund for Scientific Research, Flanders (FWO-Vlaanderen), Belgium and the International Myeloma Foundation (Brian Novis Research Grant 1999, 2000 and 2001 to Ivan Van Riet). Isabelle Vande Broek is a research assistant, Karin Vanderkerken and Kewal Asosingh are post-doctoral fellows of the FWO-Vlaanderen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Van Riet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vande Broek, I., Asosingh, K., Allegaert, V. et al. Bone marrow endothelial cells increase the invasiveness of human multiple myeloma cells through upregulation of MMP-9: evidence for a role of hepatocyte growth factor. Leukemia 18, 976–982 (2004). https://doi.org/10.1038/sj.leu.2403331

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403331

Keywords

This article is cited by

Search

Quick links