Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Direct cloning of leukemia-reactive T cells from patients treated with donor lymphocyte infusion shows a relative dominance of hematopoiesis-restricted minor histocompatibility antigen HA-1 and HA-2 specific T cells

Abstract

Donor T cells recognizing hematopoiesis-restricted minor histocompatibility antigens (mHags) HA-1 and HA-2 on malignant cells play a role in the antileukemia effect of donor lymphocyte infusion (DLI) in patients with relapsed leukemia after allogeneic stem cell transplantation. We quantified the contribution of HA-1 and HA-2 specific T cells to the total number of leukemia-reactive T cells in three HA-2 and/or HA-1 positive patients responding to DLI from their mHag negative donors. Clinical responses occurring 5–7 weeks after DLI were accompanied by an increase in percentages HLA-DR expressing T cells within the CD8+ T cell population. To clonally analyze the leukemia-reactive immune response, T cells responding to the malignancy by secreting IFNγ were isolated from peripheral blood, directly cloned, and expanded. Tetramer analysis and specific lysis of peptide-pulsed target cells showed that 3–35% of cytotoxic T lymphocyte (CTL) clones isolated were specific for HA-1 or HA-2. TCR VB analysis showed oligoclonal origin of the HA-1 and HA-2 specific CTL clones. The HA-1 and HA-2 specific CTL clones inhibited leukemic progenitor cell growth in vitro. The relatively high frequency of HA-1 and HA-2 specific T cells within the total number of tumor-reactive T cells illustrates relative immunodominance of mHags HA-1 and HA-2.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia. Blood 1995; 86: 2041–2050.

    CAS  PubMed  Google Scholar 

  2. Kolb HJ, Mittermüller J, Clemm C, Holler E, Ledderose G, Brehm G et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 1990; 76: 2462–2465.

    CAS  PubMed  Google Scholar 

  3. Collins Jr RH, Shpilberg O, Drobyski WR, Porter DL, Giralt S, Champlin R et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol 1997; 15: 433–444.

    Article  PubMed  Google Scholar 

  4. Porter DL, Roth MS, McGarigle C, Ferrara JL, Antin JH . Induction of graft-versus-host disease as immunotherapy for relapsed chronic myeloid leukemia. N Engl J Med 1994; 330: 100–106.

    Article  CAS  PubMed  Google Scholar 

  5. Kolb HJ, Holler E . Adoptive immunotherapy with donor lymphocyte transfusions. Curr Opin Oncol 1997; 9: 139–145.

    Article  CAS  PubMed  Google Scholar 

  6. Peggs KS, Mackinnon S . Cellular therapy: donor lymphocyte infusion. Curr Opin Hematol 2001; 8: 349–354.

    Article  CAS  PubMed  Google Scholar 

  7. Feinstein L, Storb R . Nonmyeloablative hematopoietic cell transplantation. Curr Opin Oncol 2001; 13: 95–100.

    Article  CAS  PubMed  Google Scholar 

  8. Champlin R, Khouri I, Shimoni A, Gajewski J, Kornblau S, Molldrem J et al. Harnessing graft-versus-malignancy: non-myeloablative preparative regimens for allogeneic haematopoietic transplantation, an evolving strategy for adoptive immunotherapy. Br J Haematol 2000; 111: 18–29.

    Article  CAS  PubMed  Google Scholar 

  9. de Bueger M, Bakker A, van Rood JJ, Van der Woude F, Goulmy E . Tissue distribution of human minor histocompatibility antigens. ubiquitous versus restricted tissue distribution indicates heterogeneity among human cytotoxic T lymphocyte-defined non-MHC antigens. J Immunol 1992; 149: 1788–1794.

    CAS  PubMed  Google Scholar 

  10. Goulmy E . Human minor histocompatibility antigens. Curr Opin Immunol 1996; 8: 75–81.

    Article  CAS  PubMed  Google Scholar 

  11. Brickner AG, Warren EH, Caldwell JA, Akatsuka Y, Golovina TN, Zarling AL et al. The immunogenicity of a new human minor histocompatibility antigen results from differential antigen processing. J Exp Med 2001; 193: 195–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vogt MH, de Paus RA, Voogt PJ, Willemze R, Falkenburg JH . DFFRY codes for a new human male-specific minor transplantation antigen involved in bone marrow graft rejection. Blood 2000; 95: 1100–1105.

    CAS  PubMed  Google Scholar 

  13. Vogt MH, Goulmy E, Kloosterboer FM, Blokland E, de Paus RA, Willemze R et al. UTY gene codes for an HLA-B60-restricted human male-specific minor histocompatibility antigen involved in stem cell graft rejection: characterization of the critical polymorphic amino acid residues for T-cell recognition. Blood 2000; 96: 3126–3132.

    CAS  PubMed  Google Scholar 

  14. Vogt MH, van den Muijsenberg JW, Goulmy E, Spierings E, Kluck P, Kester MG et al. The DBY gene codes for an HLA-DQ5-restricted human male-specific minor histocompatibility antigen involved in graft-versus-host disease. Blood 2002; 99: 3027–3032.

    Article  CAS  PubMed  Google Scholar 

  15. Wang W, Meadows LR, den Haan JM, Sherman NE, Chen Y, Blokland E et al. Human H-Y: a male-specific histocompatibility antigen derived from the SMCY protein. Science 1995; 269: 1588–1590.

    Article  CAS  PubMed  Google Scholar 

  16. Meadows L, Wang W, den Haan JM, Blokland E, Reinhardus C, Drijfhout JW et al. The HLA-A*0201-restricted H-Y antigen contains a posttranslationally modified cysteine that significantly affects T cell recognition. Immunity 1997; 6: 273–281.

    Article  CAS  PubMed  Google Scholar 

  17. Warren EH, Gavin MA, Simpson E, Chandler P, Page DC, Disteche C et al. The human UTY gene encodes a novel HLA-B8-restricted H-Y antigen. J Immunol 2000; 164: 2807–2814.

    Article  CAS  PubMed  Google Scholar 

  18. den Haan JM, Meadows LM, Wang W, Pool J, Blokland E, Bishop TL et al. The minor histocompatibility antigen HA-1: a diallelic gene with a single amino acid polymorphism. Science 1998; 279: 1054–1057.

    Article  CAS  PubMed  Google Scholar 

  19. den Haan JM, Sherman NE, Blokland E, Huczko E, Koning F, Drijfhout JW et al. Identification of a graft versus host disease-associated human minor histocompatibility antigen. Science 1995; 268: 1476–1480.

    Article  CAS  PubMed  Google Scholar 

  20. Dolstra H, Fredrix H, Maas F, Coulie PG, Brasseur F, Mensink E et al. A human minor histocompatibility antigen specific for B cell acute lymphoblastic leukemia. J Exp Med 1999; 189: 301–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van der Harst D, Goulmy E, Falkenburg JH, Kooij-Winkelaar YM, Luxemburg-Heijs SA, Goselink HM et al. Recognition of minor histocompatibility antigens on lymphocytic and myeloid leukemic cells by cytotoxic T-cell clones. Blood 1994; 83: 1060–1066.

    CAS  PubMed  Google Scholar 

  22. Falkenburg JH, Goselink HM, van der Harst D, Luxemburg-Heijs SA, Kooy-Winkelaar YM, Faber LM et al. Growth inhibition of clonogenic leukemic precursor cells by minor histocompatibility antigen-specific cytotoxic T lymphocytes. J Exp Med 1991; 174: 27–33.

    Article  CAS  PubMed  Google Scholar 

  23. Faber LM, Luxemburg-Heijs SA, Veenhof WF, Willemze R, Falkenburg JH . Generation of CD4+ cytotoxic T-lymphocyte clones from a patient with severe graft-versus-host disease after allogeneic bone marrow transplantation: implications for graft-versus-leukemia reactivity. Blood 1995; 86: 2821–2828.

    CAS  PubMed  Google Scholar 

  24. Bonnet D, Warren EH, Greenberg PD, Dick JE, Riddell SR . CD8+ minor histocompatibility antigen-specific cytotoxic T lymphocyte clones eliminate human acute myeloid leukemia stem cells. Proc Natl Acad Sci USA 1999; 96: 8639–8644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gratwohl A, Hermans J, Niederwieser D, van Biezen A, van Houwelingen HC, Apperley J . Female donors influence transplant-related mortality and relapse incidence in male recipients of sibling blood and marrow transplants. Hematol J 2001; 2: 363–370.

    Article  CAS  PubMed  Google Scholar 

  26. Wilke M, Dolstra H, Maas F, Pool J, Brouwer R, Frederik Falkenburg JH et al. Quantification of the HA-1 gene product at the RNA level; relevance for immunotherapy of hematological malignancies. Hematol J 2003; 4: 315–320.

    Article  CAS  PubMed  Google Scholar 

  27. Goulmy E, Schipper R, Pool J, Blokland E, Falkenburg JH, Vossen J et al. Mismatches of minor histocompatibility antigens between HLA-identical donors and recipients and the development of graft-versus-host disease after bone marrow transplantation. N Engl J Med 1996; 334: 281–285.

    Article  CAS  PubMed  Google Scholar 

  28. Tseng LH, Lin MT, Hansen JA, Gooley T, Pei J, Smith AG, Martin EG et al. Correlation between disparity for the minor histocompatibility antigen HA-1 and the development of acute graft-versus-host disease after allogeneic marrow transplantation. Blood 1999; 94: 2911–2914.

    CAS  PubMed  Google Scholar 

  29. van Lochem E, van der Keur M, Mommaas AM, de Gast GC, Goulmy E . Functional expression of minor histocompatibility antigens on human peripheral blood dendritic cells and epidermal Langerhans cells. Transpl Immunol 1996; 4: 151–157.

    Article  CAS  PubMed  Google Scholar 

  30. Shlomchik WD, Couzens MS, Tang CB, McNiff J, Robert ME, Liu J et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 1999; 285: 412–415.

    Article  CAS  PubMed  Google Scholar 

  31. Dickinson AM, Wang XN, Sviland L, Vyth-Dreese FA, Jackson GH, Schumacher TN et al. In situ dissection of the graft-versus-host activities of cytotoxic T cells specific for minor histocompatibility antigens. Nat Med 2002; 8: 410–414.

    Article  CAS  PubMed  Google Scholar 

  32. van Els CA, D'Amaro J, Pool J, Blokland E, Bakker A, van Elsen PJ et al. Immunogenetics of human minor histocompatibility antigens: their polymorphism and immunodominance. Immunogenetics 1992; 35: 161–165.

    Article  CAS  PubMed  Google Scholar 

  33. Mutis T, Gillespie G, Schrama E, Falkenburg JH, Moss P, Goulmy E . Tetrameric HLA class I-minor histocompatibility antigen peptide complexes demonstrate minor histocompatibility antigen-specific cytotoxic T lymphocytes in patients with graft-versus-host disease. Nat Med 1999; 5: 839–842.

    Article  CAS  PubMed  Google Scholar 

  34. Rufer N, Wolpert E, Helg C, Tiercy JM, Gratwohl A, Chapuis B et al. HA-1 and the SMCY-derived peptide FIDSYICQV (H-Y) are immunodominant minor histocompatibility antigens after bone marrow transplantation. Transplantation 1998; 66: 910–916.

    Article  CAS  PubMed  Google Scholar 

  35. Marijt WA, Heemskerk MH, Kloosterboer FM, Goulmy E, Kester MG, Van Der Hoorn MA et al. Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia. Proc Natl Acad Sci USA 2003; 100: 2742–2747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mensink E, van de Locht A, Schattenberg A, Linders E, Schaap N, Geurts van Kessel A et al. Quantitation of minimal residual disease in Philadelphia chromosome positive chronic myeloid leukaemia patients using real-time quantitative RT-PCR. Br J Haematol 1998; 102: 768–774.

    Article  CAS  PubMed  Google Scholar 

  37. Beverstock GC, de Meijer PH, ten Bokkel Huinink D, Pruijt JF, den Ottolander GJ, Wessels HW et al. A case of isodicentric 7p as sole abnormality in a patient with acute myeloid leukemia. Cancer Genet Cytogenet 1996; 89: 132–135.

    Article  CAS  PubMed  Google Scholar 

  38. Burrows SR, Kienzle N, Winterhalter A, Bharadwaj M, Altman JD, Brooks A . Peptide-MHC class I tetrameric complexes display exquisite ligand specificity. J Immunol 2000; 165: 6229–6234.

    Article  CAS  PubMed  Google Scholar 

  39. Faber LM, Luxemburg-Heijs SA, Willemze R, Falkenburg JH . Generation of leukemia-reactive cytotoxic T lymphocyte clones from the HLA-identical bone marrow donor of a patient with leukemia. J Exp Med 1992; 176: 1283–1289.

    Article  CAS  PubMed  Google Scholar 

  40. Smit WM, Rijnbeek M, van Bergen CA, Fibbe WE, Willemze R, Falkenburg JH . T cells recognizing leukemic CD34(+) progenitor cells mediate the antileukemic effect of donor lymphocyte infusions for relapsed chronic myeloid leukemia after allogeneic stem cell transplantation. Proc Natl Acad Sci USA 1998; 95: 10152–10157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Van Der Hoorn MA, Luxemburg-Heijs SA, van Bergen CA, Bongaerts R, Willemze R, Falkenburg JH . The progenitor cell inhibition assay to measure the anti-leukemic reactivity of T cell clones against acute and chronic myeloid leukemia. Methods 2003; 31: 113–119.

    Article  CAS  PubMed  Google Scholar 

  42. Heemskerk MH, Hoogeboom M, de Paus RA, Kester MG, Van Der Hoorn MA, Goulmy E et al. Redirection of anti-leukemic reactivity of peripheral T lymphocytes using gene transfer of minor histocompatibility antigen HA-2-specific T-cell receptor complexes expressing a conserved alpha joining region. Blood 2003; 102: 3530–3540.

    Article  CAS  PubMed  Google Scholar 

  43. Arden B, Clark SP, Kabelitz D, Mak TW . Human T-cell receptor variable gene segment families. Immunogenetics 1995; 42: 455–500.

    CAS  PubMed  Google Scholar 

  44. Cluitmans FH, Esendam BH, Landegent JE, Willemze R, Falkenburg JH . IL-4 down-regulates IL-2-, IL-3-, and GM-CSF-induced cytokine gene expression in peripheral blood monocytes. Ann Hematol 1994; 68: 293–298.

    Article  CAS  PubMed  Google Scholar 

  45. Dunbar PR, Smith CL, Chao D, Salio M, Shepherd D, Mirza F et al. A shift in the phenotype of melan-A-specific CTL identifies melanoma patients with an active tumor-specific immune response. J Immunol 2000; 165: 6644–6652.

    Article  CAS  PubMed  Google Scholar 

  46. Becker C, Pohla H, Frankenberger B, Schuler T, Assenmacher M, Schendel DJ et al. Adoptive tumor therapy with T lymphocytes enriched through an IFN-gamma capture assay. Nat Med 2001; 7: 1159–1162.

    Article  CAS  PubMed  Google Scholar 

  47. Valmori D, Scheibenbogen C, Dutoit V, Nagorsen D, Asemissen AM, Rubio-Godoy V et al. Circulating tumor-reactive CD8(+) T cells in melanoma patients contain a CD45RA(+)CCR7(−) effector subset exerting ex vivo tumor-specific cytolytic activity. Cancer Res 2002; 62: 1743–1750.

    CAS  PubMed  Google Scholar 

  48. Goulmy E, Pool J, van den Elsen PJ . Interindividual conservation of T-cell receptor beta chain variable regions by minor histocompatibility antigen-specific HLA-A*0201-restricted cytotoxic T-cell clones. Blood 1995; 85: 2478–2481.

    CAS  PubMed  Google Scholar 

  49. Verdijk RM, Mutis T, Wilke M, Pool J, Schrama E, Brand A et al. Exclusive TCRVbeta chain usage of ex vivo generated minor histocompatibility antigen HA-1 specific cytotoxic T cells: implications for monitoring of immunotherapy of leukemia by TCRBV spectratyping. Hematol J 2002; 3: 271–275.

    Article  CAS  PubMed  Google Scholar 

  50. Mutis T, Verdijk R, Schrama E, Esendam B, Brand A, Goulmy E . Feasibility of immunotherapy of relapsed leukemia with ex vivo-generated cytotoxic T lymphocytes specific for hematopoietic system-restricted minor histocompatibility antigens. Blood 1999; 93: 2336–2341.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank MA van der Hoorn, J Olde Wolbers, R Bongaerts, CAM van Bergen, BHJ Esendam and JW van den Muijsenberg for expert technical assistance. Furthermore, they would like to thank R van der Linden and M van der Keur for expert technical assistance with the flowcytometric isolation, and Dr MHM Heemskerk for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F M Kloosterboer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kloosterboer, F., van Luxemburg-Heijs, S., Soest, R. et al. Direct cloning of leukemia-reactive T cells from patients treated with donor lymphocyte infusion shows a relative dominance of hematopoiesis-restricted minor histocompatibility antigen HA-1 and HA-2 specific T cells. Leukemia 18, 798–808 (2004). https://doi.org/10.1038/sj.leu.2403297

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403297

Keywords

This article is cited by

Search

Quick links