Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Identification of genes whose expression patterns differ in benign lymphoid tissue and follicular, mantle cell, and small lymphocytic lymphoma

Abstract

Improved methods for diagnosing small B-cell lymphomas (SBCLs) and predicting patient response to therapy are likely to result from the ongoing discovery of molecular markers that better define these malignancies. In this report, we identify 120 genes whose expression patterns differed between reactive lymph node tissue and three types of SBCL: follicular lymphoma, mantle cell lymphoma, and chronic lymphocytic leukemia/small lymphocytic lymphoma. Whereas previously published studies have generally analyzed the gene expression profiles of one type of SBCL, work presented in this paper was intended to identify genes that are differentially expressed between three SBCL subtypes. This analysis was performed using mRNA pooled from multiple specimens representing each tissue type. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was used to validate the differential expression of 23 of these genes. Among the 23 validated genes were cyclin D1 (CCND1) and B-cell CLL/lymphoma 2, which have well-known roles in lymphoma pathogenesis. The remaining 21 genes have no currently established role in lymphoma development. Using qRT-PCR, the expression of CCND1 and seven additional genes was further studied in a panel of individual specimens. Genes identified in this study are of biological interest and represent candidate diagnostic markers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Jemal A, Thomas A, Murray T, Thun M . Cancer statistics, 2002. CA Cancer J Clin 2002; 52: 23–47.

    Article  PubMed  Google Scholar 

  2. Ries L, Miller B, Hankey BE . SEER Cancer Statistics Review, 1973–1991: Tables and Graphs. Bethesda, MD: National Cancer Institute, 1994, Report No.: NIH Pub. No. 94-2789.

    Google Scholar 

  3. Voliotis D, Diehl V . Challenges in treating hematologic malignancies. Semin Oncol 2002; 29 (Suppl 8): 30–39.

    Article  CAS  PubMed  Google Scholar 

  4. Horning SJ . Follicular lymphoma: have we made any progress? Ann Oncol 2000; 11 (Suppl 1): 23–27.

    Article  PubMed  Google Scholar 

  5. Harris NL, Jaffe ES, Stein H, Banks PM, Chan JK, Cleary ML et al. A revised European–American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood 1994; 84: 1361–1392.

    CAS  PubMed  Google Scholar 

  6. Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J et al. World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee Meeting – Airlie House, Virginia, November 1997. J Clin Oncol 1999; 17: 3835–3849.

    Article  CAS  PubMed  Google Scholar 

  7. Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J . Lymphoma classification – from controversy to consensus: the REAL and WHO classification of lymphoid neoplasms. Ann Oncol 2000; 11 (Suppl 1): 3–10.

    Article  PubMed  Google Scholar 

  8. Schena M, Shalon D, Davis RW, Brown PO . Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995; 270: 467–470.

    Article  CAS  PubMed  Google Scholar 

  9. Husson H, Carideo EG, Neuberg D, Schultze J, Munoz O, Marks PW et al. Gene expression profiling of follicular lymphoma and normal germinal center B cells using cDNA arrays. Blood 2002; 99: 282–289.

    Article  CAS  PubMed  Google Scholar 

  10. Hofmann WK, de Vos S, Tsukasaki K, Wachsman W, Pinkus GS, Said JW et al. Altered apoptosis pathways in mantle cell lymphoma detected by oligonucleotide microarray. Blood 2001; 98: 787–794.

    Article  CAS  PubMed  Google Scholar 

  11. Zhu Y, Hollmen J, Raty R, Aalto Y, Nagy B, Elonen E et al. Investigatory and analytical approaches to differential gene expression profiling in mantle cell lymphoma. Br J Haematol 2002; 119: 905–915.

    Article  CAS  PubMed  Google Scholar 

  12. Ek S, Hogerkorp CM, Dictor M, Ehinger M, Borrebaeck CA . Mantle cell lymphomas express a distinct genetic signature affecting lymphocyte trafficking and growth regulation as compared with subpopulations of normal human B cells. Cancer Res 2002; 62: 4398–4405.

    CAS  PubMed  Google Scholar 

  13. Rosenwald A, Wright G, Wiestner A, Chan WC, Connors JM, Campo E et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell 2003; 3: 185–197.

    Article  CAS  PubMed  Google Scholar 

  14. Rosenwald A, Alizadeh AA, Widhopf G, Simon R, Davis RE, Yu X et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med 2001; 194: 1639–1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stratowa C, Loffler G, Lichter P, Stilgenbauer S, Haberl P, Schweifer N et al. cDNA microarray gene expression analysis of B-cell chronic lymphocytic leukemia proposes potential new prognostic markers involved in lymphocyte trafficking. Int J Cancer 2001; 91: 474–480.

    Article  CAS  PubMed  Google Scholar 

  16. Klein U, Tu Y, Stolovitzky GA, Mattioli M, Cattoretti G, Husson H et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med 2001; 194: 1625–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Davis RE, Brown KD, Siebenlist U, Staudt LM . Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 2001; 194: 1861–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 2002; 346: 1937–1947.

    Article  PubMed  Google Scholar 

  19. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403: 503–511.

    Article  CAS  PubMed  Google Scholar 

  20. Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 2002; 8: 68–74.

    Article  CAS  PubMed  Google Scholar 

  21. Lossos IS, Alizadeh AA, Rajapaksa R, Tibshirani R, Levy R . HGAL is a novel interleukin-4-inducible gene that strongly predicts survival in diffuse large B-cell lymphoma. Blood 2003; 101: 433–440.

    Article  CAS  PubMed  Google Scholar 

  22. Thieblemont C, Chettab K, Felman P, Callet-Bauchu E, Traverse-Glehen A, Berger F et al. Identification and validation of seven genes, as potential markers, for the differential diagnosis of small B cell lymphomas (small lymphocytic lymphoma, marginal zone B cell lymphoma and mantle cell lymphoma) by cDNA macroarrays analysis. Leukemia 2002; 16: 2326–2329.

    Article  CAS  PubMed  Google Scholar 

  23. Sambrook J, Fritsche E, Maniatis T . Molecular Cloning: A Laboratory Manual, 2nd edn Plainview, NY: Cold Spring Harbor Laboratory Press, 1989.

    Google Scholar 

  24. Geiss GK, An MC, Bumgarner RE, Hammersmark E, Cunningham D, Katze MG . Global impact of influenza virus on cellular pathways is mediated by both replication-dependent and -independent events. J Virol 2001; 75: 4321–4331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lennon G, Auffray C, Polymeropoulos M, Soares MB . The IMAGE Consortium: an integrated molecular analysis of genomes and their expression. Genomics 1996; 33: 151–152.

    Article  CAS  PubMed  Google Scholar 

  26. Kenworthy AK . Imaging protein–protein interactions using fluorescence resonance energy transfer microscopy. Methods 2001; 24: 289–296.

    Article  CAS  PubMed  Google Scholar 

  27. Diehn M, Sherlock G, Binkley G, Jin H, Matese JC, Hernandez-Boussard T et al. SOURCE: a unified genomic resource of functional annotations, ontologies, and gene expression data. Nucleic Acids Res 2003; 31: 219–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L et al. The Ensembl genome database project. Nucleic Acids Res 2002; 30: 38–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eisen M, Spellman P, Brown P, Botstein D . Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998; 95: 14863–14868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bjarnason R, Wickelgren R, Hermansson M, Hammarqvist F, Carlsson B, Carlsson LM . Growth hormone treatment prevents the decrease in insulin-like growth factor I gene expression in patients undergoing abdominal surgery. J Clin Endocrinol Metab 1998; 83: 1566–1572.

    CAS  PubMed  Google Scholar 

  31. Agrawal D, Chen T, Irby R, Quackenbush J, Chambers AF, Szabo M et al. Osteopontin identified as lead marker of colon cancer progression, using pooled sample expression profiling. J Natl Cancer Inst 2002; 94: 513–521.

    Article  CAS  PubMed  Google Scholar 

  32. Rajeevan MS, Vernon SD, Taysavang N, Unger ER . Validation of array-based gene expression profiles by real-time (kinetic) RT-PCR. J Mol Diagn 2001; 3: 26–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Taylor E, Cogdell D, Coombes K, Hu L, Ramdas L, Tabor A et al. Sequence verification as quality-control step for production of cDNA microarrays. Biotechniques 2001; 31: 62–65.

    Article  CAS  PubMed  Google Scholar 

  34. Rhodes DR, Barrette TR, Rubin MA, Ghosh D, Chinnaiyan AM . Meta-analysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Cancer Res 2002; 62: 4427–4433.

    CAS  PubMed  Google Scholar 

  35. Nelson PS . Identifying immunotherapeutic targets for prostate carcinoma through the analysis of gene expression profiles. Ann NY Acad Sci 2002; 975: 232–246.

    Article  CAS  PubMed  Google Scholar 

  36. Tsujimoto Y, Yunis J, Onorato-Showe L, Erikson J, Nowell PC, Croce CM . Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation. Science 1984; 224: 1403–1406.

    Article  CAS  PubMed  Google Scholar 

  37. Tsujimoto Y, Jaffe E, Cossman J, Gorham J, Nowell PC, Croce CM . Clustering of breakpoints on chromosome 11 in human B-cell neoplasms with the t(11;14) chromosome translocation. Nature 1985; 315: 340–343.

    Article  CAS  PubMed  Google Scholar 

  38. Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ . Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990; 348: 334–336.

    Article  CAS  PubMed  Google Scholar 

  39. Vaux DL, Cory S, Adams JM . Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 1988; 335: 440–442.

    Article  CAS  PubMed  Google Scholar 

  40. Mathas S, Hinz M, Anagnostopoulos I, Krappmann D, Lietz A, Jundt F et al. Aberrantly expressed c-Jun and JunB are a hallmark of Hodgkin lymphoma cells, stimulate proliferation and synergize with NF-kappa B. EMBO J 2002; 21: 4104–4113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pan Z, Shen Y, Du C, Zhou G, Rosenwald A, Staudt LM et al. Two newly characterized germinal center B-cell-associated genes, GCET1 and GCET2, have differential expression in normal and neoplastic B cells. Am J Pathol 2003; 163: 135–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Christoph T, Rickert R, Rajewsky K . M17: a novel gene expressed in germinal centers. Int Immunol 1994; 6: 1203–1211.

    Article  CAS  PubMed  Google Scholar 

  43. Davies J, Badiani P, Weston K . Cooperation of Myb and Myc proteins in T cell lymphomagenesis. Oncogene 1999; 18: 3643–3647.

    Article  CAS  PubMed  Google Scholar 

  44. Jones PA, Laird PW . Cancer epigenetics comes of age. Nat Genet 1999; 21: 163–167.

    Article  CAS  PubMed  Google Scholar 

  45. Melki JR, Clark SJ . DNA methylation changes in leukaemia. Semin Cancer Biol 2002; 12: 347–357.

    Article  CAS  PubMed  Google Scholar 

  46. Erlanson M, Gronlund E, Lofvenberg E, Roos G, Lindh J . Expression of activation markers CD23 and CD69 in B-cell non-Hodgkin's lymphoma. Eur J Haematol 1998; 60: 125–132.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Washington Technology Center grant number F01-B10 and by research funding from RationalDiagnostics, Inc. to DES. SCS was supported in part by NIH training Grant 5T32HL007312-25.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D E Sabath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmechel, S., LeVasseur, R., Yang, KJ. et al. Identification of genes whose expression patterns differ in benign lymphoid tissue and follicular, mantle cell, and small lymphocytic lymphoma. Leukemia 18, 841–855 (2004). https://doi.org/10.1038/sj.leu.2403293

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403293

Keywords

This article is cited by

Search

Quick links