Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Downmodulation of ERK protein kinase activity inhibits VEGF secretion by human myeloma cells and myeloma-induced angiogenesis

Abstract

The mitogen-activated protein (MAP) cascade leading to the activation of extracellular signal-regulated kinases 1/2 (ERK1/2) is critical for regulating myeloma cell growth; however, the relationship of ERK1/2 activity with vascular endothelial growth factor (VEGF) production and the effects of its downmodulation in myeloma cells are not elucidated. We found that the treatment with MAP/ERK kinase 1 (MEK1) inhibitors PD98059 or PD184352 produced a reduction of phosphorylated ERK1/2 (p-ERK1/2) levels in myeloma cells of more than 80% and prevented the increase of p-ERK1/2 induced by interleukin-6 (IL-6). MEK1 inhibitors also induced a significant inhibition of myeloma cell proliferation and blunted the stimulatory effect induced by IL-6. A significant inhibition of basal VEGF secretion by myeloma cells as well as a suppression of the stimulatory effect of IL-6 on VEGF was observed by either PD98059 or PD184352. Moreover, we also found that the PI3K kinase inhibitors, but not p38 MAPK inhibitors, reduced VEGF secretion by myeloma cells and increase the inhibitory effect of MEK1 inhibitors. In an ‘in vitro’ model of angiogenesis, we found that MEK1 inhibitors impair vessel formation induced by myeloma cells and restored by VEGF treatment, suggesting that the downmodulation of ERK1/2 activity reduces myeloma-induced angiogenesis by inhibiting VEGF secretion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Chang F, Steelman LS, Lee JT, Shelton JG, Navolanic PM, Blalock WL et al. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 2003; 17: 1263–1293.

    Article  CAS  PubMed  Google Scholar 

  2. Platanias LC . Map kinase signaling pathways and hematologic malignancies. Blood 2003; 101: 4667–4679.

    Article  CAS  PubMed  Google Scholar 

  3. Miranda MB, McGuire TF, Johnson TE . Importance of MEK-1/-2 signaling in monocytic and granulocytic differentiation of myeloid cell lines. Leukemia 2002; 16: 683–692.

    Article  CAS  PubMed  Google Scholar 

  4. Blalock WL, Pearce M, Chang F, Lee JT, Pohnert SC, Burrows C et al. Effect of inducible MEK1 activation on the cytokine dependency of lymphoid cells. Leukemia 2001; 15: 794–807.

    Article  CAS  PubMed  Google Scholar 

  5. Hoyle PE, Moye PW, Steelman LS, Blalock WL, Franklin RA, Pearce M et al. Differential abilities of the Raf family of protein kinases to abrogate cytokine dependency and prevent apoptosis in murine hematopoietic cells by a MEK1-dependent mechanism. Leukemia 2000; 14: 642–656.

    Article  CAS  PubMed  Google Scholar 

  6. Chang F, Steelman LS, Shelton JG, Lee JT, Navolanic PM, Blalock WL et al. Regulation of cell cycle progression and apoptosis by the Ras/Raf/MEK/ERK pathway. Int J Oncol 2003; 22: 469–480.

    CAS  PubMed  Google Scholar 

  7. Dent P, Jarvis WD, Birrer MJ, Fisher PB, Schmidt-Ullrich RK, Grant S . The roles of signaling by the p42/p44 mitogen-activated protein (MAP) kinase pathway; a potential route to radio- and chemo-sensitization of tumor cells resulting in the induction of apoptosis and loss of clonogenicity. Leukemia 1998; 12: 1843–1850.

    Article  CAS  PubMed  Google Scholar 

  8. Bonati A, Carlo-Stella C, Lunghi P, Albertini R, Pinelli S, Migliaccio E et al. Selective expression and constitutive phosphorylation of Shc proteins in the CD34+ fraction of chronic myelogenous leukemias. Cancer Res 2000; 60: 728–732.

    CAS  PubMed  Google Scholar 

  9. Lunghi P, Tabilio A, Pinelli SG, Ridolo E, Albertini R, Carlo-Stella C et al. Expression and activation of SHC/MAP kinase pathway in primary acute myeloid leukemia blasts. Hematol J 2001; 2: 70–80.

    Article  CAS  PubMed  Google Scholar 

  10. Kim SC, Hahn JS, Min YH, Yoo NC, Ko YW, Lee WJ . Constitutive activation of extracellular signal-regulated kinase in human acute leukemias: combined role of activation of MEK, hyperexpression of extracellular signal-regulated kinase, and downregulation of a phosphatase, PAC1. Blood 1999; 93: 3893–3899.

    CAS  PubMed  Google Scholar 

  11. Towatari M, Lida H, Tanimoto M, Iwata H, Hamaguchi M, Saito H . Constitutive activation of mitogen-activated protein kinase pathway in acute leukemia cells. Leukemia 1997; 11: 479–484.

    Article  CAS  PubMed  Google Scholar 

  12. Pelicci G, Lanfrancone L, Salcini AE, Romano A, Mele S, Borrello MG et al. Constitutive phosphorylation of Shc proteins in human tumors. Oncogene 1995; 11: 899–907.

    CAS  PubMed  Google Scholar 

  13. Lee JT, McCubrey JA . The Raf/MEK/ERK (MAPK) signal transduction cascade as a target for chemotherapeutic intervention in leukemia. Leukemia 2002; 16: 486–507.

    Article  CAS  PubMed  Google Scholar 

  14. Lunghi P, Tabilio A, Dall'Aglio PP, Ridolo E, Carlo-Stella C, Pelicci PG et al. Down-modulation of ERK activity inhibits the proliferation and induces the apoptosis of primary acute myelogenous leukemia blasts. Leukemia 2003; 17: 1783–1793.

    Article  CAS  PubMed  Google Scholar 

  15. Milella M, Kornblau SM, Estrov Z, Carter BZ, Lapillonne H, Harris D et al. Therapeutic targeting of the MEK/MAPK signal transduction module in acute myeloid leukemia. J Clin Invest 2001; 108: 851–859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Milella M, Estrov Z, Komblau SM, Carter BZ, Konopleva M, Tari A et al. Synergistic induction of apoptosis by simultaneous disruption of the Bcl-2 and MEK–MAPK pathways in acute myelogenous leukemia. Blood 2002; 99: 3461–3464.

    Article  CAS  PubMed  Google Scholar 

  17. Morgan MA, Dolp O, Reuter CWM . Cell-cycle-dependent activation of mitogen-activated protein kinase kinase (MEK-1/2) in myeloid leukemia cell lines and induction of growth inhibition and apoptosis by inhibitors of RAS signaling. Blood 2001; 97: 1823–1834.

    Article  CAS  PubMed  Google Scholar 

  18. Baines P, Fisher J, Truran L, Davies E, Hallett M, Hoy T et al. The MEK inhibitor, PD98059, reduces survival but does not block acute myeloid leukemia blast maturation in vitro. Eur J Haematol 2000; 64: 211–218.

    Article  CAS  PubMed  Google Scholar 

  19. Hideshima T, Anderson KC . Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat Rev Cancer 2002; 2: 927–937.

    Article  CAS  PubMed  Google Scholar 

  20. Hideshima T, Chauhan D, Podar K, Schlossman RL, Richardson P, Anderson KC . Novel therapies targeting the myeloma cell and its bone marrow microenvironment. Semin Oncol 2001; 28: 607–612.

    Article  CAS  PubMed  Google Scholar 

  21. Ogata A, Chauhan D, Teoh G, Treon SP, Urashima M, Schlossman RL et al. IL-6 triggers cell growth via the Ras-dependent mitogen-activated protein kinase cascade. J Immunol 1997; 159: 2212–2221.

    CAS  PubMed  Google Scholar 

  22. Hideshima T, Nakamura N, Chauhan D, Anderson KC . Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 2001; 20: 5991–6000.

    Article  CAS  PubMed  Google Scholar 

  23. Podar K, Tai YT, Davies FE, Lentzsch S, Sattler M, Hideshima T et al. Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood 2001; 98: 428–435.

    Article  CAS  PubMed  Google Scholar 

  24. Bellamy WT . Expression of vascular endothelial growth factor and its receptors in multiple myeloma and other hematopoietic malignancies. Semin Oncol 2001; 28: 551–559.

    Article  CAS  PubMed  Google Scholar 

  25. Dankbar B, Padro T, Leo R, Feldmann B, Kropff M, Mesters RM et al. Vascular endothelial growth factor and interleukin-6 in paracrine tumor–stromal cell interactions in multiple myeloma. Blood 2000; 95: 2630–2636.

    CAS  PubMed  Google Scholar 

  26. Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR . A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 1995; 92: 7686–7689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR . PD098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem 1995; 270: 27489–27494.

    Article  CAS  PubMed  Google Scholar 

  28. Sebolt-Leopold JS, Dudley DT, Herrera R, Van Becelaere K, Wiland A, Gowan RC et al. Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat Med 1999; 5: 810–816.

    Article  CAS  PubMed  Google Scholar 

  29. Duesbery NS, Webb CP, Vande Woude GF . MEK Wars, a new front in the battle against cancer. Nat Med 1999; 5: 736–737.

    Article  CAS  PubMed  Google Scholar 

  30. Sebolt-Leopold JS . Development of anticancer drugs targeting the MAP kinase pathway. Oncogene 2000; 19: 6594–6599.

    Article  CAS  PubMed  Google Scholar 

  31. English JM, Cobb MH . Pharmacological inhibitors of MAPK pathways. Trends Pharmacol Sci 2002; 23: 40–45.

    Article  CAS  PubMed  Google Scholar 

  32. Giuliani N, Colla S, Lazzaretti M, Sala R, Roti G, Mancini C et al. Pro-angiogenetic properties of human myeloma cells: production of angiopoietin-1 and its potential relationship with myeloma-induced angiogenesis. Blood 2003; 102: 638–645.

    Article  CAS  PubMed  Google Scholar 

  33. Tan YI, Rouse J, Zhang A, Cariati S, Cohen P, Comb MJ . FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. EMBO J 1996; 15: 4629–4642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vacca A, Ribatti D, Presta M, Minischetti M, Iurlaro M, Ria R et al. Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 1999; 93: 3064–3073.

    CAS  PubMed  Google Scholar 

  35. Munshi NC, Wilson C . Increased bone marrow microvessel density in newly diagnosed multiple myeloma carries a poor prognosis. Semin Oncol 2001; 28: 565–569.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang B, Fenton RG . Proliferation of IL-6-independent multiple myeloma does not require the activity of extracellular signal-regulated kinases (ERK1/2). J Cell Physiol 2002; 193: 42–54.

    Article  CAS  PubMed  Google Scholar 

  37. Dai Y, Landowski TH, Rosen ST, Dent P, Grant S . Combined treatment with the checkpoint abrogator UCN-01 and MEK1/2 inhibitors potently induces apoptosis in drug-sensitive and -resistant myeloma cells through an IL-6-independent mechanism. Blood 2002; 100: 3333–3343.

    Article  CAS  PubMed  Google Scholar 

  38. Fukuda R, Kelly B, Semenza GL . Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E(2) is mediated by hypoxia-inducible factor 1. Cancer Res 2003; 63: 2330–2334.

    CAS  PubMed  Google Scholar 

  39. Jung YD, Nakano K, Liu W, Gallick GE, Ellis LM . Extracellular signal-regulated kinase activation is required for up-regulation of vascular endothelial growth factor by serum starvation in human colon carcinoma cells. Cancer Res 1999; 59: 4804–4807.

    CAS  PubMed  Google Scholar 

  40. Davies SP, Reddy H, Caivano M, Cohen P . Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 2000; 351: 95–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Squires MS, Nixon PM, Cook SJ . Cell-cycle arrest by PD184352 requires inhibition of extracellular signal-regulated kinases (ERK) 1/2 but not ERK5/BMK1. Biochem J 2002; 366: 673–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mody N, Leitch J, Armstrong C, Dixon J, Cohen P . Effects of MAP kinase cascade inhibitors on the MKK5/ERK5 pathway. FEBS Lett 2001; 502: 21–24.

    Article  CAS  PubMed  Google Scholar 

  43. Hideshima T, Akiyama M, Hayashi T, Richardson P, Schlossman R, Chauhan D et al. Targeting p38 MAPK inhibits multiple myeloma cell growth in the bone marrow milieu. Blood 2003; 101: 703–705.

    Article  CAS  PubMed  Google Scholar 

  44. Chauhan D, Kharbanda S, Ogata A, Urashima M, Teoh G, Robertson M et al. Interleukin-6 inhibits Fas-induced apoptosis and stress-activated protein kinase activation in multiple myeloma cells. Blood 1997; 89: 227–234.

    CAS  PubMed  Google Scholar 

  45. Blalock WL, Navolanic PM, Steelman LS, Shelton JG, Moye PW, Lee JT et al. Requirement for the PI3K/Akt pathway in MEK1-mediated growth and prevention of apoptosis: identification of an Achilles heel in leukemia. Leukemia 2003; 17: 1058–1067.

    Article  CAS  PubMed  Google Scholar 

  46. Shelton JG, Steelman LS, Lee JT, Knapp SL, Blalock WL, Moye PW et al. Effects of the RAF/MEK/ERK and PI3K/AKT signal transduction pathways on the abrogation of cytokine-dependence and prevention of apoptosis in hematopoietic cells. Oncogene 2003; 22: 2478–2492.

    Article  CAS  PubMed  Google Scholar 

  47. McCubrey JA, Lee JT, Steelman LS, Blalock WL, Moye PW, Chang F et al. Interactions between the PI3K and Raf signaling pathways can result in the transformation of hematopoietic cells. Cancer Detect Prev 2001; 25: 375–393.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the ‘Associazione Italiana per la Ricerca sul Cancro’ (AIRC), from the ‘Ministero dell’Istruzione dell'Università e della Ricerca Scientifica' (MIUR FIN, FIL and ‘Progetto Strategico Oncologia SP/4: Terapia preclinica molecolare in oncologia’); NG and PL are recipient of a grant from ‘Associazione Chiara Tassoni per la Lotta contro la Leucemia e il Cancro-Parma’. We wish to thank Dr Judith S Sebolt Leopold (Cancer Molecular Sciences, Pfizer Global Research and Development, Ann Arbor, MI, USA) who kindly provided us the compound PD184352.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Giuliani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giuliani, N., Lunghi, P., Morandi, F. et al. Downmodulation of ERK protein kinase activity inhibits VEGF secretion by human myeloma cells and myeloma-induced angiogenesis. Leukemia 18, 628–635 (2004). https://doi.org/10.1038/sj.leu.2403269

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403269

Keywords

This article is cited by

Search

Quick links