Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

TEL-Syk fusion constitutively activates PI3-K/Akt, MAPK and JAK2-independent STAT5 signal pathways

Abstract

We previously reported the fusion of the TEL gene to the Syk gene in myelodysplastic syndrome with t(9;12)(q22;p12). TEL-Syk fusion transformed interleukin-3 (IL-3)-dependent murine hematopoietic cell line BaF3 to growth factor independence. Here, we investigate the intracellular signal transduction of the stable transfectants. TEL-Syk fusion protein was associated with the p85 subunit of phosphatidyl inositol 3 kinase (PI3-K) followed by the activation of Akt in the absence of IL-3. Vav, phospholipase C-γ2 and mitogen-activated protein kinase (MAPK) were also constitutively activated. TEL-Syk also activated the signal transducer and activator of transcription 5 (STAT5) in the absence of Janus kinase 2 activation. None of these kinases were phosphorylated in the BaF3 cells transfected with TELΔPNT-Syk in which the oligomerization domain of TEL was deleted. Inhibitor analysis showed that the MAPK pathway was important in TEL-Syk-mediated cell proliferation. The immunofluorescence technique revealed that the TEL-Syk fusion protein was located in the cytoplasm. These data suggest that TEL-Syk fusion protein in the cytoplasm leads to the constitutive activation of PI3-K/Akt, MAPK and STAT5 signal pathways, which are closely involved in IL-3-independent cell proliferation of BaF3 cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Blume-Jensen P, Hunter T . Oncogenic kinase signalling. Nature 2001; 411: 355–365.

    Article  CAS  PubMed  Google Scholar 

  2. Ravandi F, Talpaz M, Kantarjian H, Estrov Z . Cellular signalling pathways: new targets in leukaemia therapy. Br J Haematol 2002; 116: 57–77.

    Article  CAS  PubMed  Google Scholar 

  3. Taniguchi T, Kobayashi T, Kondo J, Takahashi K, Nakamura H, Suzuki J et al. Molecular cloning of a porcine gene syk that encodes a 72-kDa protein-tyrosine kinase showing high susceptibility to proteolysis. J Biol Chem 1991; 266: 15790–15796.

    CAS  PubMed  Google Scholar 

  4. Peters JD, Furlong MT, Asai DJ, Harrison ML, Geahlen RL . Syk, activated by cross-linking the B-cell antigen receptor, localizes to the cytosol where it interacts with and phosphorylates alpha-tubulin on tyrosine. J Biol Chem 1996; 271: 4755–4762.

    Article  CAS  PubMed  Google Scholar 

  5. Li HL, Forman MS, Kurosaki T, Pure E . Syk is required for BCR-mediated activation of p90Rsk, but not p70S6k, via a mitogen-activated protein kinase-independent pathway in B cells. J Biol Chem 1997; 272: 18200–18208.

    Article  CAS  PubMed  Google Scholar 

  6. Beitz LO, Fruman DA, Kurosaki T, Cantley LC, Scharenberg AM . SYK is upstream of phosphoinositide 3-kinase in B cell receptor signaling. J Biol Chem 1999; 274: 32662–32666.

    Article  CAS  PubMed  Google Scholar 

  7. Turner M, Mee PJ, Costello PS, Williams O, Price AA, Duddy LP et al. Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature 1995; 378: 298–302.

    Article  CAS  PubMed  Google Scholar 

  8. Cheng AM, Rowley B, Pao W, Hayday A, Bolen JB, Pawson T . Syk tyrosine kinase required for mouse viability and B-cell development. Nature 1995; 378: 303–306.

    Article  CAS  PubMed  Google Scholar 

  9. Goodman PA, Wood CM, Vassilev A, Mao C, Uckun FM . Spleen tyrosine kinase (Syk) deficiency in childhood pro-B cell acute lymphoblastic leukemia. Oncogene 2001; 20: 3969–3978.

    Article  CAS  PubMed  Google Scholar 

  10. Kuno Y, Abe A, Emi N, Iida M, Yamamori T, Tanimoto M et al. An atypical myelodysplastic syndrome with t(9;12)(q22;p12) and TEL gene rearrangement. Br J Haematol 1999; 106: 570–571.

    Article  CAS  PubMed  Google Scholar 

  11. Coopman PJ, Do MT, Barth M, Bowden ET, Hayes AJ, Basyuk E et al. The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells. Nature 2000; 406: 742–747.

    Article  CAS  PubMed  Google Scholar 

  12. Kim CA, Phillips ML, Kim W, Gingery M, Tran HH, Robinson MA et al. Polymerization of the SAM domain of TEL in leukemogenesis and transcriptional repression. EMBO J 2001; 20: 4173–4182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rubnitz JE, Pui CH, Downing JR . The role of TEL fusion genes in pediatric leukemias. Leukemia 1999; 13: 6–13.

    Article  CAS  PubMed  Google Scholar 

  14. Golub TR, Barker GF, Lovett M, Gilliland DG . Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 1994; 77: 307–316.

    Article  CAS  PubMed  Google Scholar 

  15. Papadopoulos P, Ridge SA, Boucher CA, Stocking C, Wiedemann LM . The novel activation of ABL by fusion to an ets-related gene, TEL. Cancer Res 1995; 55: 34–38.

    CAS  PubMed  Google Scholar 

  16. Lacronique V, Boureux A, Valle VD, Poirel H, Quang CT, Mauchauffe M et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 1997; 278: 1309–1312.

    Article  CAS  PubMed  Google Scholar 

  17. Peeters P, Raynaud SD, Cools J, Wlodarska I, Grosgeorge J, Philip P et al. Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood 1997; 90: 2535–2540.

    CAS  PubMed  Google Scholar 

  18. Eguchi M, Eguchi-Ishimae M, Tojo A, Morishita K, Suzuki K, Sato Y et al. Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). Blood 1999; 93: 1355–1363.

    CAS  PubMed  Google Scholar 

  19. Cazzaniga G, Tosi S, Aloisi A, Giudici G, Daniotti M, Pioltelli P et al. The tyrosine kinase abl-related gene ARG is fused to ETV6 in an AML-M4Eo patient with a t(1;12)(q25;p13): molecular cloning of both reciprocal transcripts. Blood 1999; 94: 4370–4373.

    CAS  PubMed  Google Scholar 

  20. Kuno Y, Abe A, Emi N, Iida M, Yokozawa T, Towatari M et al. Constitutive kinase activation of the TEL-Syk fusion gene in myelodysplastic syndrome with t(9;12)(q22;p12). Blood 2001; 97: 1050–1055.

    Article  CAS  PubMed  Google Scholar 

  21. Darnell Jr JE, Kerr IM, Stark GR . Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994; 264: 1415–1421.

    Article  CAS  PubMed  Google Scholar 

  22. Ihle JN . Cytokine receptor signalling. Nature 1995; 377: 591–594.

    Article  CAS  PubMed  Google Scholar 

  23. Ward AC, Touw I, Yoshimura A . The Jak-Stat pathway in normal and perturbed hematopoiesis. Blood 2000; 95: 19–29.

    CAS  PubMed  Google Scholar 

  24. Schwaller J, Parganas E, Wang D, Cain D, Aster JC, Williams IR et al. Stat5 is essential for the myelo- and lymphoproliferative disease induced by TEL/JAK2. Mol Cell 2000; 6: 693–704.

    Article  CAS  PubMed  Google Scholar 

  25. McCubrey JA, May WS, Duronio V, Mufson A . Serine/threonine phosphorylation in cytokine signal transduction. Leukemia 2000; 14: 9–21.

    Article  CAS  PubMed  Google Scholar 

  26. Nguyen MH, Ho JM, Beattie BK, Barber DL . TEL-JAK2 mediates constitutive activation of the phosphatidylinositol 3′-kinase/protein kinase B signaling pathway. J Biol Chem 2001; 276: 32704–32713.

    Article  CAS  PubMed  Google Scholar 

  27. Kim SC, Hahn JS, Min YH, Yoo NC, Ko YW, Lee WJ . Constitutive activation of extracellular signal-regulated kinase in human acute leukemias: combined role of activation of MEK, hyperexpression of extracellular signal-regulated kinase, and downregulation of a phosphatase, PAC1. Blood 1999; 93: 3893–3899.

    CAS  PubMed  Google Scholar 

  28. McCubrey JA, Steelman LS, Hoyle PE, Blalock WL, Weinstein-Oppenheimer C, Franklin RA et al. Differential abilities of activated Raf oncoproteins to abrogate cytokine dependency, prevent apoptosis and induce autocrine growth factor synthesis in human hematopoietic cells. Leukemia 1998; 12: 1903–1929.

    Article  CAS  PubMed  Google Scholar 

  29. Hoyle PE, Moye PW, Steelman LS, Blalock WL, Franklin RA, Pearce M et al. Differential abilities of the Raf family of protein kinases to abrogate cytokine dependency and prevent apoptosis in murine hematopoietic cells by a MEK1-dependent mechanism. Leukemia 2000; 14: 642–656.

    Article  CAS  PubMed  Google Scholar 

  30. Chubet RG, Brizzard BL . Vectors for expression and secretion of FLAG epitope-tagged proteins in mammalian cells. Biotechniques 1996; 20: 136–141.

    Article  CAS  PubMed  Google Scholar 

  31. Morgenstern JP, Land H . Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res 1990; 18: 3587–3596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yee JK, Miyanohara A, LaPorte P, Bouic K, Burns JC, Friedmann T . A general method for the generation of high-titer, pantropic retroviral vectors: highly efficient infection of primary hepatocytes. Proc Natl Acad Sci USA 1994; 91: 9564–9568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abe A, Chen ST, Miyanohara A, Friedmann T . In vitro cell-free conversion of noninfectious Moloney retrovirus particles to an infectious form by the addition of the vesicular stomatitis virus surrogate envelope G protein. J Virol 1998; 72: 6356–6361.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yamamoto O, Hamada T, Tokui N, Sasaguri Y . Comparison of three in vitro assay systems used for assessing cytotoxic effect of heavy metals on cultured human keratinocytes. J Uoeh 2001; 23: 35–44.

    Article  CAS  PubMed  Google Scholar 

  35. Craxton A, Jiang A, Kurosaki T, Clark EA . Syk and Bruton's tyrosine kinase are required for B cell antigen receptor-mediated activation of the kinase Akt. J Biol Chem 1999; 274: 30644–30650.

    Article  CAS  PubMed  Google Scholar 

  36. Ding J, Takano T, Gao S, Han W, Noda C, Yanagi S et al. Syk is required for the activation of Akt survival pathway in B cells exposed to oxidative stress. J Biol Chem 2000; 275: 30873–30877.

    Article  CAS  PubMed  Google Scholar 

  37. Bertagnolo V, Marchisio M, Volinia S, Caramelli E, Capitani S . Nuclear association of tyrosine-phosphorylated Vav to phospholipase C-gamma1 and phosphoinositide 3-kinase during granulocytic differentiation of HL-60 cells. FEBS Lett 1998; 441: 480–484.

    Article  CAS  PubMed  Google Scholar 

  38. Towatari M, Iida H, Tanimoto M, Iwata H, Hamaguchi M, Saito H . Constitutive activation of mitogen-activated protein kinase pathway in acute leukemia cells. Leukemia 1997; 11: 479–484.

    Article  CAS  PubMed  Google Scholar 

  39. Lee Jr JT, McCubrey JA . The Raf/MEK/ERK signal transduction cascade as a target for chemotherapeutic intervention in leukemia. Leukemia 2002; 16: 486–507.

    Article  CAS  PubMed  Google Scholar 

  40. Ihle JN . STATs: signal transducers and activators of transcription. Cell 1996; 84: 331–334.

    Article  CAS  PubMed  Google Scholar 

  41. Nosaka T, Kawashima T, Misawa K, Ikuta K, Mui AL, Kitamura T . STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells. EMBO J 1999; 18: 4754–4765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gouilleux-Gruart V, Gouilleux F, Desaint C, Claisse JF, Capiod JC, Delobel J et al. STAT-related transcription factors are constitutively activated in peripheral blood cells from acute leukemia patients. Blood 1996; 87: 1692–1697.

    CAS  PubMed  Google Scholar 

  43. Weber-Nordt RM, Egen C, Wehinger J, Ludwig W, Gouilleux-Gruart V, Mertelsmann R et al. Constitutive activation of STAT proteins in primary lymphoid and myeloid leukemia cells and in Epstein–Barr virus (EBV)-related lymphoma cell lines. Blood 1996; 88: 809–816.

    CAS  PubMed  Google Scholar 

  44. Xia Z, Baer MR, Block AW, Baumann H, Wetzler M . Expression of signal transducers and activators of transcription proteins in acute myeloid leukemia blasts. Cancer Res 1998; 58: 3173–3180.

    CAS  PubMed  Google Scholar 

  45. Birkenkamp KU, Geugien M, Lemmink HH, Kruijer W, Vellenga E . Regulation of constitutive STAT5 phosphorylation in acute myeloid leukemia blasts. Leukemia 2001; 15: 1923–1931.

    Article  CAS  PubMed  Google Scholar 

  46. Poirel H, Oury C, Carron C, Duprez E, Laabi Y, Tsapis A et al. The TEL gene products: nuclear phosphoproteins with DNA binding properties. Oncogene 1997; 14: 349–357.

    Article  CAS  PubMed  Google Scholar 

  47. Chakrabarti SR, Sood R, Nandi S, Nucifora G . Posttranslational modification of TEL and TEL/AML1 by SUMO-1 and cell-cycle-dependent assembly into nuclear bodies. Proc Natl Acad Sci USA 2000; 97: 13281–13285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Qin S, Inazu T, Yang C, Sada K, Taniguchi T, Yamamura H . Interleukin 2 mediates p72syk activation in peripheral blood lymphocytes. FEBS Lett 1994; 345: 233–236.

    Article  CAS  PubMed  Google Scholar 

  49. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91: 231–241.

    Article  CAS  PubMed  Google Scholar 

  50. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998; 282: 1318–1321.

    Article  CAS  PubMed  Google Scholar 

  51. Shuai K, Halpern J, ten Hoeve J, Rao X, Sawyers CL . Constitutive activation of STAT5 by the BCR-ABL oncogene in chronic myelogenous leukemia. Oncogene 1996; 13: 247–254.

    CAS  PubMed  Google Scholar 

  52. Sternberg DW, Tomasson MH, Carroll M, Curley DP, Barker G, Caprio M et al. The TEL/PDGFbetaR fusion in chronic myelomonocytic leukemia signals through STAT5-dependent and STAT5-independent pathways. Blood 2001; 98: 3390–3397.

    Article  CAS  PubMed  Google Scholar 

  53. Kiyoi H, Ohno R, Ueda R, Saito H, Naoe T . Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene 2002; 21: 2555–2563.

    Article  CAS  PubMed  Google Scholar 

  54. Blalock WL, Weinstein-Oppenheimer C, Chang F, Hoyle PE, Wang XY, Algate PA et al. Signal transduction, cell cycle regulatory, and anti-apoptotic pathways regulated by IL-3 in hematopoietic cells: possible sites for intervention with anti-neoplastic drugs. Leukemia 1999; 13: 1109–1166.

    Article  CAS  PubMed  Google Scholar 

  55. Onishi M, Nosaka T, Misawa K, Mui AL, Gorman D, McMahon M et al. Identification and characterization of a constitutively active STAT5 mutant that promotes cell proliferation. Mol Cell Biol 1998; 18: 3871–3879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yoshimura A, Ohkubo T, Kiguchi T, Jenkins NA, Gilbert DJ, Copeland NG et al. A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J 1995; 14: 2816–2826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Endo TA, Masuhara M, Yokouchi M, Suzuki R, Sakamoto H, Mitsui K et al. A new protein containing an SH2 domain that inhibits JAK kinases. Nature 1997; 387: 921–924.

    Article  CAS  PubMed  Google Scholar 

  58. Klejman A, Schreiner SJ, Nieborowska-Skorska M, Slupianek A, Wilson M, Smithgall TE et al. The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells. EMBO J 2002; 21: 5766–5774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brunet A, Pages G, Pouyssegur J . Constitutively active mutants of MAP kinase kinase (MEK1) induce growth factor-relaxation and oncogenicity when expressed in fibroblasts. Oncogene 1994; 9: 3379–3387.

    CAS  PubMed  Google Scholar 

  60. Cowley S, Paterson H, Kemp P, Marshall CJ . Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 1994; 77: 841–852.

    Article  CAS  PubMed  Google Scholar 

  61. Blalock WL, Pearce M, Steelman LS, Franklin RA, McCarthy SA, Cherwinski H et al. A conditionally-active form of MEK1 results in autocrine tranformation of human and mouse hematopoietic cells. Oncogene 2000; 19: 526–536.

    Article  CAS  PubMed  Google Scholar 

  62. Blalock WL, Pearce M, Chang F, Lee JT, Pohnert SC, Burrows C et al. Effects of inducible MEK1 activation on the cytokine dependency of lymphoid cells. Leukemia 2001; 15: 794–807.

    Article  CAS  PubMed  Google Scholar 

  63. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1031–1037.

    Article  CAS  PubMed  Google Scholar 

  64. Oliver JM, Burg DL, Wilson BS, McLaughlin JL, Geahlen RL . Inhibition of mast cell Fc epsilon R1-mediated signaling and effector function by the Syk-selective inhibitor, piceatannol. J Biol Chem 1994; 269: 29697–29703.

    CAS  PubMed  Google Scholar 

  65. Su L, David M . Distinct mechanisms of STAT phosphorylation via the interferon-alpha/beta receptor. Selective inhibition of STAT3 and STAT5 by piceatannol. J Biol Chem 2000; 275: 12661–12666.

    Article  CAS  PubMed  Google Scholar 

  66. Wang BH, Lu ZX, Polya GM . Inhibition of eukaryote serine/threonine-specific protein kinases by piceatannol. Planta Med 1998; 64: 195–199.

    Article  CAS  PubMed  Google Scholar 

  67. Wieder T, Prokop A, Bagci B, Essmann F, Bernicke D, Schulze-Osthoff K et al. Piceatannol, a hydroxylated analog of the chemopreventive agent resveratrol, is a potent inducer of apoptosis in the lymphoma cell line BJAB and in primary, leukemic lymphoblasts. Leukemia 2001; 15: 1735–1742.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr JN Ihle for providing anti-STAT5 antisera, Dr Kazuhito Yamamoto and Hitoshi Kiyoi for helpful discussions, and Satoshi Suzuki and Chika Wakamatsu for their excellent technical assistance. This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, the Osaka Foundation for Promotion of Clinical Immunology, the Akiyama Foundation, the Suhara Memorial Foundation, the Mochida Memorial Foundation for Medical and Pharmaceutical Research and the Uehara Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Abe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanie, T., Abe, A., Matsuda, T. et al. TEL-Syk fusion constitutively activates PI3-K/Akt, MAPK and JAK2-independent STAT5 signal pathways. Leukemia 18, 548–555 (2004). https://doi.org/10.1038/sj.leu.2403266

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403266

Keywords

This article is cited by

Search

Quick links