Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

NF-κB/Rel-mediated regulation of apoptosis in hematologic malignancies and normal hematopoietic progenitors

Abstract

The activity of NF-κB/Rel transcription factors can downmodulate apoptosis in normal and neoplastic cells of the hematologic and other compartments, contributing in maintaining neoplastic clone survival and impairing response to therapy. Alterations in nfκb or iκB genes are documented in some hematologic neoplasias, while in others dysfunction in NF-κB/Rel-activating signaling pathways can be recognized. The prosurvival properties of NF-κB/Rel appear to rely on the induced expression of molecules (caspase inhibitors, Bcl2 protein family members, etc.), which interfere with the apoptosis pathway. Constitutive NF-κB/Rel activity in some hematologic malignancies could be advantageous for neoplastic clone expansion by counteracting stress stimuli (consumption of growth factors and metabolites) and immune system-triggered apoptosis; it is furthermore likely to play a central role in determining resistance to therapy. Based on this evidence, NF-κB/Rel-blocking approaches have been introduced in antineoplastic strategies. The identification of NF-κB/Rel target genes relevant for survival in specific neoplasias is required in order to address tailored therapies and avoid possible detrimental effects due to widespread NF-κB/Rel inhibition. Moreover, comparative analyses of normal hematopoietic progenitors and neoplastic cell sensitivities to inhibitors of NF-κB/Rel and their target genes will allow to evaluate the impact of these tools on normal bone marrow.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Ghosh S, May MJ, Kopp EB . NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 1998; 16: 225–260.

    Article  CAS  PubMed  Google Scholar 

  2. Karin M, Ben-Neriah Y . Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 2000; 18: 621–623.

    CAS  PubMed  Google Scholar 

  3. Rothwarf DM, Karin M . The NF-κB activation pathway: a paradigm in information transfer from membrane to nucleus. Sci STKE 1999; 5: RE1.

    Google Scholar 

  4. Herr I, Debatin K-M . Cellular stress response and apoptosis in cancer therapy. Blood 2001; 89: 2603–2614.

    Google Scholar 

  5. Rayet B, Gèlinas C . Aberrant rel/nfκb genes and activity in human cancer. Oncogene 1999; 18: 6938–6947.

    CAS  PubMed  Google Scholar 

  6. Beg AA, Baltimore D . An essential role of NF-κB in preventing TNF-κ-induced cell death. Science 1996; 274: 782–784.

    CAS  PubMed  Google Scholar 

  7. Liu Z-G, Hsu H, Goeddel DV, Garin M . Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-κB activation prevents cell death. Cell 1996; 87: 565–576.

    CAS  PubMed  Google Scholar 

  8. Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM . Suppression of TNF-κ-induced apoptosis by NF-κB. Science 1996; 274: 787–789.

    Article  CAS  PubMed  Google Scholar 

  9. Wang CY, Mayo MW, Baldwin AS . TNF- and cancer therapy induced apoptosis: potentiation by inhibition of NF-κB. Science 1996; 274: 784–787.

    Article  CAS  PubMed  Google Scholar 

  10. Wu M, Lee H, Bellas RE, Schauer SL, Arsura M, Katz D et al. Inhibition of NF-κB/Rel induces apoptosis of B cells. EMBO J 1996; 15: 4682–4690.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Karin M, Ling A . NF-κB at the crossroads of life and death. Nat Immunol 2002; 3: 221–227.

    CAS  PubMed  Google Scholar 

  12. Wang CY, Cusack Jr JC, Liu R, Baldwin Jr AS . Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-κB. Nat Med 1999; 5: 412–417.

    PubMed  Google Scholar 

  13. White MK, McCubrey JA . Suppression of apoptosis: role in cell growth and neoplasia. Leukemia 2001; 15: 1011–1021.

    CAS  PubMed  Google Scholar 

  14. Baldwin AS . Control of oncogenesis and cancer therapy resistance by the transcription factor NF-κB. J Clin Invest 2001; 107: 241–246.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Orlowski RZ, Baldwin AS . NF-κB as a therapeutic target in cancer. Trends Mol Med 2002; 8: 385–390.

    CAS  PubMed  Google Scholar 

  16. Mathew S, Murty VV, Dalla-Favera R, Chaganti RS . Chromosomal localization of genes encoding the transcription factors, c-rel, NF-κBp50, NF-κBp65, and lyt-10 by fluorescence in situ hybridization. Oncogene 1993; 8: 191–193.

    CAS  PubMed  Google Scholar 

  17. Chang CC, Zhang J, Lombardi L, Neri A, Dalla-Favera R . Mechanism of expression and role in transcriptional control of the proto-oncogene NFκB-2/LYT-10. Oncogene 1994; 9: 923–933.

    CAS  PubMed  Google Scholar 

  18. Migliazza A, Lombardi L, Rocchi M, Trecca D, Chang CC, Antonacci R et al. chromosomal aberrations generate 3′ truncations of the NFκB2/lyt-10 gene in lymphoid malignancies. Blood 1994; 84: 3850–3860.

    CAS  PubMed  Google Scholar 

  19. Thakur S, Lin HC, Tseng WT, Kumar S, Bravo R, Foss F et al. Rearrangement and altered expression of the NFκB-2 gene in human cutaneous T-lymphoma cells. Oncogene 1994; 9: 2335–2344.

    CAS  PubMed  Google Scholar 

  20. Dobrzanski P, Ryseck RP, Bravo R . Specific inhibition of RelB/p52 transcriptional activity by the C-terminal domain of p100. Oncogene 1995; 10: 1003–1007.

    CAS  PubMed  Google Scholar 

  21. Heusch M, Lin L, Geleziunas R, Greene WC . The generation of nfκb2 p52: mechanism and efficiency. Oncogene 1999; 18: 6201–6208.

    CAS  PubMed  Google Scholar 

  22. Wang Y, Cui H, Schroering A, Ding JL, Lane WS, McGill G et al. NF-κB2 p100 is a pro-apoptotic protein with anti-oncogenic function. Nat Cell Biol 2002; 4: 888–893.

    CAS  PubMed  Google Scholar 

  23. Hacker H, Karin M . Is NF-κB2/p100 a direct activator of programmed cell death? Cancer Cell 2002; 2: 431–433.

    CAS  PubMed  Google Scholar 

  24. Brownell E, Fell HP, Tucker PW, Geurts van Kessel AH, Hagemeijer A, Rice NR . Regional localization of the human c-rel locus using translocation chromosome analysis. Oncogene 1988; 2: 527–529.

    CAS  PubMed  Google Scholar 

  25. Barth TF, Dohner H, Werner CA, Stilgenbauer S, Schlotter M, Pawlita M et al. Characteristic pattern of chromosomal gains and losses in primary large B-cell lymphomas of the gastrointestinal tract. Blood 1998; 91: 4321–4330.

    CAS  PubMed  Google Scholar 

  26. Houldsworth J, Mathew S, Rao PH, Dyomina K, Louie DC, Parsa N et al. REL proto-oncogene is frequently amplified in extranodal diffuse large cell lymphoma. Blood 1996; 87: 25–29.

    CAS  PubMed  Google Scholar 

  27. Barth TF, Martin-Subero JI, Joos S, Menz CK, Hasel C, Mechtersheimer G et al. Gains of 2p involving the REL locus correlate with nuclear c-Rel protein accumulation in neoplastic cells of classical Hodgkin lymphoma. Blood 2003; 101: 3681.

    CAS  PubMed  Google Scholar 

  28. Capobianco AJ, Simmons DL, Gilmore TD . Cloning and expression of a chicken c-rel cDNA: unlike p59v-rel, p68c-rel is a cytoplasmic protein in chicken embryo fibroblasts. Oncogene 1990; 5: 257–265.

    CAS  PubMed  Google Scholar 

  29. Gilmore TD . The Re1/NF-κB/I kappa B signal transduction pathway and cancer. Cancer Treat Res 2003; 115: 241–265.

    CAS  PubMed  Google Scholar 

  30. Ohno H, Takimoto G, McKeithan TW . The candidate proto-oncogene bcl-3 is related to genes implicated in cell lineage determination and cell cycle control. Cell 1990; 23: 991–997.

    Google Scholar 

  31. Au WY, Horsman DE, Ohno H, Klasa RJ, Gascoyne RD . Bcl-3/IgH translocation (14;19)(q32;q13) in non-Hodgkin's lymphomas. Leuk Lymphoma 2002; 43: 813–816.

    CAS  PubMed  Google Scholar 

  32. Nishikori M, Maesako Y, Ueda C, Kurata M, Uchiyama T, Ohno H . High-level expression of BCL3 differentiates t(2;5)(p23;q35)-positive anaplastic large cell lymphoma from Hodgkin disease. Blood 2003; 101: 2789–2796.

    CAS  PubMed  Google Scholar 

  33. Watanabe N, Iwamura I, Shinoda T, Fujita T . Regulation of NFKB1 protein by the candidate oncoprotein BCL-3: generation of NF-κB homodimers from the cytoplasmic pool of p50-p150 and nuclear translocation. EMBO J 1997; 16: 3609–3620.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Heissmeyer V, Krappmann D, Wulczyn FG, Scheidereit C . NF-κB p105 is a target of IkappaB kinases and controls signal induction of Bcl-3-p50 complexes. EMBO J 1999; 18: 4766–4778.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Michel F, Soler-Lopez M, Petosa C, Cramer P, Siebenlist U, Muller CW . Crystal structure of the ankyrin repeat domain of Bcl-3: a unique member of the IκB protein family. EMBO J 2001; 20: 6180–6190.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Dechend R, Hirano F, Lehmann K, Heissmeyer V, Ansieau S, Wulczyn FG et al. The Bcl-3 oncoprotein acts as a bridging factor between NF-κB/Rel and nuclear co-regulators. Oncogene 1999; 18: 3316–3323.

    CAS  PubMed  Google Scholar 

  37. Willis TG, Jadayel DM, Du MQ, Peng H, Perry AR, Abdul-Rauf M et al. Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell 1999; 96: 35–45.

    CAS  PubMed  Google Scholar 

  38. Zhang Q, Siebert R, Yan M, Hinzmann B, Cui X, Xue L et al. Inactivating mutations and overexpression of BCL10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22;q32). Nat Genet 1999; 22: 63–68.

    CAS  PubMed  Google Scholar 

  39. Guiet C, Vito P . Caspase recruitment domain (CARD)-dependent cytoplasmic filaments mediate bcl10-induced NF-κB activation. J Cell Biol 2000; 148: 1131–1140.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Thome M, Tschopp J . Bcl10. Curr Biol 2002; 12: R45.

    CAS  PubMed  Google Scholar 

  41. Yui D, Yoneda T, Oono K, Katayama T, Imaizumi K, Tohyama M . Interchangeable binding of Bcl10 to TRAF2 and cIAPs regulates apoptosis signaling. Oncogene 2001; 20: 4317–4323.

    CAS  PubMed  Google Scholar 

  42. Ohshima K, Muta H, Kawasaki C, Muta K, Deyev V, Kanda M et al. Bcl10 expression, rearrangement and mutation in MALT lymphoma: correlation with expression of nuclear factor-κB. Int J Oncol 2001; 19: 283–289.

    CAS  PubMed  Google Scholar 

  43. Dierlamm J, Baens M, Wlodarska I, Stefanova-Ouzounova M, Hernandez JM, Hossfeld DK et al. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood 1999; 93: 3601–3609.

    CAS  PubMed  Google Scholar 

  44. Uren AG, O'Rourke K, Aravind LA, Pisabarro MT, Seshagiri S, Koonin EV et al. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 2000; 6: 961–967.

    CAS  PubMed  Google Scholar 

  45. Lucas PC, Yonezumi M, Inohara N, McAllister-Lucas LM, Abazeed ME, Chen FF et al. Bcl10 and MALT1, independent targets of chromosomal translocation in MALT lymphoma, cooperate in a novel NF-κB signaling pathway. J Biol Chem 2001; 276: 19012–19019.

    CAS  PubMed  Google Scholar 

  46. Ye H, Liu H, Raderer M, Chott A, Ruskone-Fourmestrsux A, Wotherspoon A et al. High incidence of t(11;18)(q21;21) in Helicobacter pylori-negative gastric MALT lymphoma. Blood 2003; 101: 2547–2550.

    CAS  PubMed  Google Scholar 

  47. Bargou RC, Emmerich F, Krappmann D, Bommert K, Mapara MY, Arnold W et al. Constitutive nuclear factor-κB-RelA activation is required for proliferation and survival of Hodgkin's disease tumor cells. J Clin Invest 1997; 100: 2961–2969.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hinz M, Loser P, Mathas S, Krappmann D, Dorken B, Scheidereit C . Constitutive NF-κB maintains high expression of a characteristic gene network, including CD40, CD86, and a set of antiapoptotic genes in Hodgkin/Reed–Sternberg cells. Blood 2001; 97: 2798–2807.

    CAS  PubMed  Google Scholar 

  49. Izban KF, Ergin M, Huang Q, Qin JZ, Martinez RL, Schnitzer B et al. Characterization of NF-κB expression in Hodgkin's disease: inhibition of constitutively expressed NF-κB results in spontaneous caspase-independent apoptosis in Hodgkin and Reed–Sternberg cells. Mod Pathol 2001; 14: 297–310.

    CAS  PubMed  Google Scholar 

  50. Emmerich F, Meiser M, Hummel M, Demel G, Foss HD, Jundt F et al. Overexpression of IκB alpha without inhibition of NF-κB activity and mutations in the I kappa B alpha gene in Reed–Sternberg cells. Blood 1999; 94: 3129–3134.

    CAS  PubMed  Google Scholar 

  51. Horie R, Watanabe T, Ito K, Morisita Y, Watanabe M, Ishida T et al. Cytoplasmic aggregation of TRAF2 and TRAF5 proteins in the Hodgkin–Reed–Sternberg cells. Am J Pathol 2002; 160: 1647–1654.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Horie R, Watanabe T, Morishita Y, Ito K, Ishida T, Kanegae Y et al. Ligand-independent signaling by overexpressed CD30 drives NF-κB activation in Hodgkin–Reed–Sternberg cells. Oncogene 2002; 21: 2493–2503.

    CAS  PubMed  Google Scholar 

  53. Jeang KT . Functional activities of the human T-cell leukemia virus type I Tax oncoprotein: cellular signaling through NF-κB. Cytokine Growth Factor Rev 2001; 12: 207–217.

    CAS  PubMed  Google Scholar 

  54. Gu L, Findley HW, Zhou M . MDM2 induces NF-κB/p65 expression transcriptionally through Sp1-binding sites: a novel, p53-independent role of MDM2 in doxorubicin resistance in acute lymphoblastic leukemia. Blood 2002; 99: 3367–3375.

    CAS  PubMed  Google Scholar 

  55. Hamdane M, David-Cordonnier MH, D'Halluin JC . Activation of p65 NF-κB protein by p210BCR-ABL in a myeloid cell line (P210BCR-ABL activates p65 NF-kappaB). Oncogene 1997; 15: 2267–2275.

    CAS  PubMed  Google Scholar 

  56. Wu WS, Xu ZX, Hittelman WN, Salomoni P, Pandolfi PP, Chang KS . Promyelocytic leukemia protein sensitizes tumor necrosis factor alpha-induced apoptosis by inhibiting the NF-κB survival pathway. J Biol Chem 2003; 278: 12294–12304.

    CAS  PubMed  Google Scholar 

  57. Romano MF, Lamberti A, Bisogni R, Tassone P, Pagnini D, Storti G et al. of cytosine arabinoside-induced apoptosis in human myeloblastic leukemia cells by NF-κB/Rel-specific decoy oligodeoxynucleotides. Gene Ther 2000; 7: 1234–1237.

    CAS  PubMed  Google Scholar 

  58. Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA et al. Nuclear factor-κB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 2001; 98: 2301–2307.

    CAS  PubMed  Google Scholar 

  59. Wuchter C, Krappmann D, Cai Z, Ruppert V, Scheidereit C, Dorken B et al. In vitro susceptibility to TRAIL-induced apoptosis of acute leukemia cells in the context of TRAIL receptor gene expression and constitutive NF-κB activity. Leukemia 2001; 15: 921–928.

    CAS  PubMed  Google Scholar 

  60. Baumgartner B, Weber M, Quirling M, Fischer C, Page S, Adam M et al. Increased IkappaB kinase activity is associated with activated NF-κB in acute myeloid blasts. Leukemia 2002; 16: 2062–2071.

    CAS  PubMed  Google Scholar 

  61. Guzman ML, Swiderski CF, Howard DS, Grimes BA, Rossi RM, Szilvassy SJ et al. Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci USA 2002; 99: 16220–16225.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Romano MF, Petrella A, Bisogni R, Turco MC, Venuta S . Effect of NF-κB/Rel inhibition on spontaneous vs chemotherapy-induced apoptosis in AML and normal cord blood CD34+cells. Leukemia 2003; 17: 1190–1192.

    CAS  PubMed  Google Scholar 

  63. Romano MF, Lamberti A, Tassone P, Alfinito F, Costantini S, Chiurazzi F et al. Triggering of CD40 antigen inhibits fludarabine-induced apoptosis in B chronic lymphocytic leukemia cells. Blood 1998; 92: 990–995.

    CAS  PubMed  Google Scholar 

  64. Romano MF, Lamberti A, Bisogni R, Garbi C, Pagnano AM, Auletta P et al. Amifostine inhibits hematopoietic progenitor cell apoptosis by activating NF-κB/Rel transcription factors. Blood 1999; 94: 4060–4066.

    CAS  PubMed  Google Scholar 

  65. Kurreck J . Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 2003; 270: 1628–1644.

    CAS  PubMed  Google Scholar 

  66. Zhou A, Scoggin S, Gaynor RB, Williams NS . Identification of NF-κB-regulated genes induced by TNFκ utilizing expression profiling and RNA interference. Oncogene 2003; 22: 2054–2064.

    CAS  PubMed  Google Scholar 

  67. Adams J . Proteasome inhibition: a novel approach to cancer therapy. Trends Mol Med 2002; 8: S49–54.

    CAS  PubMed  Google Scholar 

  68. Mattaj JW, Englmeier L . Nuclecytoplasmic transport: the soluble phase. Annu Rev Biochem 1998; 67: 265–306.

    CAS  PubMed  Google Scholar 

  69. Gould C, Wong CF . Designing specific protein kinase inhibitors: insights from computer simulations and comparative sequence/structure analysis. Pharmacol Ther 2002; 93: 169–178.

    CAS  PubMed  Google Scholar 

  70. Pyatt DW, Stillman WS, Yang Y, Gross S, Zheng JH, Irons RD . An essential role for NF-κB in human CD34(+) bone marrow cell survival. Blood 1999; 93: 3302–3308.

    CAS  PubMed  Google Scholar 

  71. Besancon F, Atfi A, Gespach C, Cayre YE, Bourgeade MF . Evidence for a role of NF-κB in the survival of hematopoietic cells mediated by interleukin 3 and oncogenic TEL/platelet-derived growth factor receptor beta fusion protein. Proc Natl Acad Sci USA 1998; 95: 8081–8087.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G . Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 1997; 278: 687–689.

    CAS  PubMed  Google Scholar 

  73. Zhu J, Emerson SG . Hematopoietic cytokines, transcription factors and lineage commitment. Oncogene 2002; 21: 3295–3313.

    CAS  PubMed  Google Scholar 

  74. Webster GA, Perkins ND . Transcriptional cross talk between NF-κB and p53. Mol Cell Biol 1999; 19: 3485–3495.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hinz M, Lemke P, Anagnostopoulos I, Hacker C, Krappmann D, Mathas S et al. Nuclear factor κB-dependent gene expression profiling of Hodgkin's disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J Exp Med 2002; 196: 605–617.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Biswas DK, Martin KJ, McAlister C, Cruz AP, Graner E, Dai SC et al. Apoptosis caused by chemotherapeutic inhibition of nuclear factor-κB activation. Cancer Res 2003; 63: 290–295.

    CAS  PubMed  Google Scholar 

  77. Rayet B, Fan Y, Gelinas C . Mutations in the v-Rel transactivation domain indicate altered phosphorylation and identify a subset of NF-κB-regulated cell death inhibitors important for v-Rel transforming activity. Mol Cell Biol 2003; 23: 1520–1533.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Richter BW, Duckett CS . The IAP proteins: caspase inhibitors and beyond. Sci STKE 2000; 44: PE1.

    Google Scholar 

  79. Altieri DC . Validating survivin as a cancer therapeutic target. Nat Rev Cancer 2003; 3: 46–54.

    CAS  PubMed  Google Scholar 

  80. Fukuda S, Pelus LM . Regulation of the inhibitor-of-apoptosis family member survivin in normal cord blood and bone marrow CD34(+) cells by hematopoietic growth factors: implication of survivin expression in normal hematopoiesis. Blood 2001; 98: 2091–2100.

    CAS  PubMed  Google Scholar 

  81. Fukuda S, Pelus LM . Elevation of survivin levels by hematopoietic growth factors occurs in quiescent CD34+ hematopoietic stem and progenitor cells before cell cycle entry. Cell Cycle 2002; 1: 322–326.

    CAS  PubMed  Google Scholar 

  82. Fukuda S, Foster RG, Porter SB, Pelus LM . The antiapoptosis protein survivin is associated with cell cycle entry of normal cord blood CD34(+) cells and modulates cell cycle and proliferation of mouse hematopoietic progenitor cells. Blood 2002; 100: 2463–2471.

    CAS  PubMed  Google Scholar 

  83. Holcik M, Sonenberg N, Korneluk RG . Internal ribosome initiation of translation and the control of cell death. Trends Genet 2000; 16: 469–473.

    CAS  PubMed  Google Scholar 

  84. Micheau O, Lens S, Gaide O, Alevizopoulos K, Tschopp J . NF-κB signals induce the expression of c-FLIP. Mol Cell Biol 2001; 21: 5299–5305.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bentires-Alj M, Barbu V, Fillet M, Chariot A, Relic B, Jacobs N et al. NF-κB transcription factor induces drug resistance through MDR1 expression in cancer cells. Oncogene 2003; 22: 90–97.

    CAS  PubMed  Google Scholar 

  86. Wang CY, Guttridge DC, Mayo MW, Baldwin Jr AS . NF-κB induces expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis. Mol Cell Biol 1999; 19: 5923–5929.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Zong WX, Edelstein LC, Chen C, Bash J, Gelinas C . The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-κB that blocks TNFalpha-induced apoptosis. Genes Dev 1999; 13: 382–387.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Jones PL, Ping D, Boss JM . Tumor necrosis factor alpha and interleukin-1beta regulate the murine manganese superoxide dismutase gene through a complex intronic enhancer involving C/EBP-beta and NF-κB. Mol Cell Biol 1997; 17: 6970–6981.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Heyninck K, De Valck D, Vanden Berghe W, Van Criekinge W, Contreras R, Fiers W et al. The zinc finger protein A20 inhibits TNF-induced NF-κB-dependent gene expression by interfering with an RIP- or TRAF2-mediated transactivation signal and directly binds to a novel NF-κB-inhibiting protein ABIN. J Cell Biol 1999; 145: 1471–1482.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. He KL, Ting AT . A20 inhibits tumor necrosis factor (TNF) alpha-induced apoptosis by disrupting recruitment of TRADD and RIP to the TNF receptor 1 complex in Jurkat T cells. Mol Cell Biol 2002; 22: 26034–26045.

    Google Scholar 

  91. Tran H, Brunet A, Griffith EC, Greenberg ME . The many forks in FOXO's road. Sci STKE 2003; 172: RE5.

    Google Scholar 

  92. Nozaki S, Sledge Jr GW, Nakshatri H . Repression of GADD153/CHOP by NF-κB: a possible cellular defense against endoplasmic reticulum stress-induced cell death. Oncogene 2001; 20: 2178–2185.

    CAS  PubMed  Google Scholar 

  93. Mollace V, Nottet HS, Clayette P, Turco MC, Muscoli C, Salvemini D et al. Oxidative stress and neuroAIDS: triggers, modulators and novel antioxidants. Trends Neurosci 2001; 24: 411–416.

    CAS  PubMed  Google Scholar 

  94. Akiyama M, Hideshima T, Hayashi T, Tai YT, Mitsiades CS, Mitsiades N et al. Nuclear factor-κB p65 mediates tumor necrosis factor alpha-induced nuclear translocation of telomerase reverse transcriptase protein. Cancer Res 2003; 63: 18–21.

    CAS  PubMed  Google Scholar 

  95. Ni H, Ergin M, Huang Q, Qin JZ, Amin HM, Martinez RL et al. Analysis of expression of nuclear factor kappa B (NF-κB) in multiple myeloma: downregulation of NF-kappa B induces apoptosis. Br J Haematol 2001; 115: 279–286.

    CAS  PubMed  Google Scholar 

  96. Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Richardson PG, Hideshima T et al. Biologic sequelae of nuclear factor-κB blockade in multiple myeloma: therapeutic applications. Blood 2002; 99: 4079–4086.

    CAS  PubMed  Google Scholar 

  97. Parker KM, Ma MH, Manyak S, Altamirano CV, Tang YM, Frantzen M et al. Identification of polymorphisms of the IκBκ gene associated with an increased risk of multiple myeloma. Cancer Genet Cytogenet 2002; 137: 43–48.

    CAS  PubMed  Google Scholar 

  98. Mitsiades CS, Mitsiades N, Poulaki V, Schlossman R, Akiyama M, Chauhan D et al. Activation of NF-κB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene 2002; 21: 5673–5683.

    CAS  PubMed  Google Scholar 

  99. Feinman R, Koury J, Thames M, Barlogie B, Epstein J, Siegel DS . Role of NF-κB in the rescue of multiple myeloma cells from glucocorticoid-induced apoptosis by bcl-2. Blood 1999; 93: 3044–3052.

    CAS  PubMed  Google Scholar 

  100. Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Richardson PG, Hideshima T et al. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 2002; 99: 4525–4530.

    CAS  PubMed  Google Scholar 

  101. Mitsiades CS, Treon SP, Mitsiades N, Shima Y, Richardson P, Schlossman R et al. TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood 2001; 98: 795–804.

    CAS  PubMed  Google Scholar 

  102. Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T et al. NF-κB as a therapeutic target in multiple myeloma. J Biol Chem 2002; 277: 16639–16647.

    CAS  PubMed  Google Scholar 

  103. Testorelli C . Telomerase and cancer. J Exp Clin Cancer Res 2003; 22: 165–169.

    CAS  PubMed  Google Scholar 

  104. Darnell Jr JE . Transcription factors as targets for cancer therapy. Nat Rev Cancer 2002; 2: 740–749.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M C Turco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turco, M., Romano, M., Petrella, A. et al. NF-κB/Rel-mediated regulation of apoptosis in hematologic malignancies and normal hematopoietic progenitors. Leukemia 18, 11–17 (2004). https://doi.org/10.1038/sj.leu.2403171

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403171

Keywords

This article is cited by

Search

Quick links