Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

DNA damage transiently increases TRF2 mRNA expression and telomerase activity

Abstract

Telomerase activity transiently increases when HL60 cells are treated with the topoisomerase II inhibitor etoposide. A quantitative assessment revealed that telomerase is activated by etoposide treatment in a number of cell lines and that the increase is reversible after withdrawal of etoposide from the cell culture. Telomerase activation correlated with the occurrence of DNA damage but not with cell cycle arrest. We did not detect any transcriptional upregulation of hTERT mRNA, suggesting a post-transcriptional mechanism of telomerase activation. Furthermore, the mRNA expression of the telomere binding protein TRF2 was upregulated early and reversibly after etoposide treatment. TRF1 mRNA expression levels were unchanged after DNA damage, but increased when the cells accumulated in the G2/M phase. The data show that the telosome reacts after DNA damage by upregulating telomerase activity and TRF2 expression in malignant cells. It has previously been shown that overexpression of TRF2 can repress senescence signals arising from critically shortened telomeres. We show here that TRF2 is upregulated by undirected DNA damage that also affects the telomeric DNA. These data suggest that upregulation of telomerase activity and TRF2 expression might act as antiapoptotic mechanisms in the DNA-damage response of malignant cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Collins K . Mammalian telomeres and telomerase. Curr Opin Cell Biol 2000; 12: 378–383.

    Article  CAS  Google Scholar 

  2. Blackburn EH . Structure and function of telomeres. Nature 1991; 350: 569–573.

    Article  CAS  Google Scholar 

  3. Counter CM, Hirte HW, Bacchetti S, Harley CB . Telomerase activity in human ovarian carcinoma. Proc Natl Acad Sci USA 1994; 91: 2900–2904.

    Article  CAS  Google Scholar 

  4. Ducrest AL, Szutorisz H, Lingner J, Nabholz M . Regulation of the human telomerase reverse transcriptase gene. Oncogene 2002; 21: 541–552.

    Article  CAS  Google Scholar 

  5. Fu W, Begley JG, Killen MW, Mattson MP . Anti-apoptotic role of telomerase in pheochromocytoma cells. J Biol Chem 1999; 274: 7264–7271.

    Article  CAS  Google Scholar 

  6. Cao Y, Li H, Deb S, Liu JP . TERT regulates cell survival independent of telomerase enzymatic activity. Oncogene 2002; 21: 3130–3138.

    Article  CAS  Google Scholar 

  7. Hahn WC, Stewart SA, Brooks MW, York SG, Eaton E, Kurachi A et al. Inhibition of telomerase limits the growth of human cancer cells. Nat Med 1999; 5: 1164–1170.

    Article  CAS  Google Scholar 

  8. Saretzki G, Ludwig A, von Zglinicki T, Runnebaum IB . Ribozyme-mediated telomerase inhibition induces immediate cell loss but not telomere shortening in ovarian cancer cells. Cancer Gene Ther 2001; 8: 827–834.

    Article  CAS  Google Scholar 

  9. Lee KH, Rudolph KL, Ju YJ, Greenberg RA, Cannizzaro L, Chin L et al. Telomere dysfunction alters the chemotherapeutic profile of transformed cells. Proc Natl Acad Sci USA 2001; 98: 3381–3386.

    Article  CAS  Google Scholar 

  10. Broccoli D, Smogorzewska A, Chong L, De Lange T . Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat Genet 1997; 17: 231–235.

    Article  CAS  Google Scholar 

  11. Aragona M, De Divitiis O, La Torre D, Panetta S, D'Avella D, Pontoriero A et al. Immunohistochemical TRF1 expression in human primary intracranial tumors. Anticancer Res 2001; 21: 2135–2139.

    CAS  PubMed  Google Scholar 

  12. De Divitiis O, La Torre D . Inverse correlation of TRF1 expression and cell proliferation in human primary intracranial tumors. J Neurosurg Sci 2001; 45: 1–6.

    CAS  PubMed  Google Scholar 

  13. Matsutani N, Yokozaki H, Tahara E, Tahara H, Kuniyasu H, Kitadai Y et al. Expression of MRE11 complex (MRE11, RAD50, NBS1) and hRap1 and its relation with telomere regulation, telomerase activity in human gastric carcinomas. Pathobiology 2001; 69: 219–224.

    Article  CAS  Google Scholar 

  14. Ohyashiki JH, Hayashi S, Yahata N, Iwama H, Ando K, Tauchi T et al. Impaired telomere regulation mechanism by TRF1 (telomere-binding protein), but not TRF2 expression, in acute leukemia cells. Int J Oncol 2001; 18: 593–598.

    CAS  PubMed  Google Scholar 

  15. Yamada K, Yajima T, Yagihashi A, Kobayashi D, Koyanagi Y, Asanuma K et al. Role of human telomerase reverse transcriptase and telomeric-repeat binding factor proteins 1 and 2 in human hematopoietic cells. Jpn J Cancer Res 2000; 91: 1278–1284.

    Article  CAS  Google Scholar 

  16. Figueroa R, Lindenmaier H, Hergenhahn M, Nielsen KV, Boukamp P . Telomere erosion varies during in vitro aging of normal human fibroblasts from young and adult donors. Cancer Res 2000; 60: 2770–2774.

    CAS  PubMed  Google Scholar 

  17. Otsuka T, Uchida N, Arima F, Shigematsu H, Fukuyama T, Maeda M et al. Down-regulation of human telomeric protein TRF1 gene expression during myeloid differentiation in human hematopoietic cells. Int J Hematol 2000; 71: 334–339.

    CAS  PubMed  Google Scholar 

  18. van Steensel B, De Lange T . Control of telomere length by the human telomeric protein TRF1. Nature 1997; 385: 740–743.

    Article  CAS  Google Scholar 

  19. Smogorzewska A, van Steensel B, Bianchi A, Oelmann S, Schaefer MR, Schnapp G et al. Control of human telomere length by TRF1 and TRF2. Mol Cell Biol 2000; 20: 1659–1668.

    Article  CAS  Google Scholar 

  20. Kishi S, Wulf G, Nakamura M, Lu KP . Telomeric protein Pin2/TRF1 induces mitotic entry and apoptosis in cells with short telomeres and is down-regulated in human breast tumors. Oncogene 2001; 20: 1497–1508.

    Article  CAS  Google Scholar 

  21. Kishi S, Zhou XZ, Ziv Y, Khoo C, Hill DE, Shiloh Y et al. Telomeric protein Pin2/TRF1 as an important ATM target in response to double strand DNA breaks. J Biol Chem 2001; 276: 29282–29291.

    Article  CAS  Google Scholar 

  22. Kishi S, Lu KP . A critical role for Pin2/TRF1 in ATM-dependent regulation. Inhibition of Pin2/TRF1 function complements telomere shortening, radiosensitivity, and the G(2)/M checkpoint defect of ataxia-telangiectasia cells. J Biol Chem 2002; 277: 7420–7429.

    Article  CAS  Google Scholar 

  23. Ancelin K, Brunori M, Bauwens S, Koering CE, Brun C, Ricoul M et al. Targeting assay to study the cis functions of human telomeric proteins: evidence for inhibition of telomerase by TRF1 and for activation of telomere degradation by TRF2. Mol Cell Biol 2002; 22: 3474–3487.

    Article  CAS  Google Scholar 

  24. van Steensel B, Smogorzewska A, De Lange T . TRF2 protects human telomeres from end-to-end fusions. Cell 1998; 92: 401–413.

    Article  CAS  Google Scholar 

  25. Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H et al. Mammalian telomeres end in a large duplex loop. Cell 1999; 97: 503–514.

    Article  CAS  Google Scholar 

  26. Karlseder J, Broccoli D, Dai Y, Hardy S, De Lange T . p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 1999; 283: 1321–1325.

    Article  CAS  Google Scholar 

  27. Karlseder J, Smogorzewska A, De Lange T . Senescence induced by altered telomere state, not telomere loss. Science 2002; 295: 2446–2449.

    Article  CAS  Google Scholar 

  28. Moriarty TJ, Dupuis S, Autexier C . Rapid upregulation of telomerase activity in human leukemia HL-60 cells treated with clinical doses of the DNA-damaging drug etoposide. Leukemia 2002; 16: 1112–1120.

    Article  CAS  Google Scholar 

  29. Sato N, Mizumoto K, Kusumoto M, Nishio S, Maehara N, Urashima T et al. Up-regulation of telomerase activity in human pancreatic cancer cells after exposure to etoposide. Br J Cancer 2000; 82: 1819–1826.

    Article  CAS  Google Scholar 

  30. Lin Z, Lim S, Viani MA, Sapp M, Lim MS . Down-regulation of telomerase activity in malignant lymphomas by radiation and chemotherapeutic agents. Am J Pathol 2001; 159: 711–719.

    Article  CAS  Google Scholar 

  31. Krupp G, Kuhne K, Tamm S, Klapper W, Heidorn K, Rott A et al. Molecular basis of artifacts in the detection of telomerase activity and a modified primer for a more robust ‘TRAP’ assay. Nucleic Acids Res 1997; 25: 919–921.

    Article  CAS  Google Scholar 

  32. Klapper W, Singh KK, Heidorn K, Parwaresch R, Krupp G . Regulation of telomerase activity in quiescent immortalized human cells. Biochim Biophys Acta 1998; 1442: 120–126.

    Article  CAS  Google Scholar 

  33. Wersto RP, Chrest FJ, Leary JF, Morris C, Stetler-Stevenson MA, Gabrielson E . Doublet discrimination in DNA cell-cycle analysis. Cytometry 2001; 46: 296–306.

    Article  CAS  Google Scholar 

  34. Blackburn EH . Switching and signaling at the telomere. Cell 2001; 106: 661–673.

    Article  CAS  Google Scholar 

  35. Tsujimoto H, Usami N, Hasegawa K, Yamada T, Nagaki K, Sasakuma T . De novo synthesis of telomere sequences at the healed breakpoints of wheat deletion chromosomes. Mol Gen Genet 1999; 262: 851–856.

    Article  CAS  Google Scholar 

  36. Diede SJ, Gottschling DE . Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases alpha and delta. Cell 1999; 99: 723–733.

    Article  CAS  Google Scholar 

  37. Bottius E, Bakhsis N, Scherf A . Plasmodium falciparum telomerase: de novo telomere addition to telomeric and nontelomeric sequences and role in chromosome healing. Mol Cell Biol 1998; 18: 919–925.

    Article  CAS  Google Scholar 

  38. Wang H, Blackburn EH . De novo telomere addition by Tetrahymena telomerase in vitro. EMBO J 1997; 16: 866–879.

    Article  CAS  Google Scholar 

  39. Morin GB . Recognition of a chromosome truncation site associated with alpha-thalassaemia by human telomerase. Nature 1991; 353: 454–456.

    Article  CAS  Google Scholar 

  40. Damm K, Hemmann U, Garin-Chesa P, Hauel N, Kauffmann I, Priepke H et al. A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J 2001; 20: 6958–6968.

    Article  CAS  Google Scholar 

  41. Gieseler F, Bauer E, Nuessler V, Clark M, Valsamas S . Molecular effects of topoisomerase II inhibitors in AML cell lines: correlation of apoptosis with topoisomerase II activity but not with DNA damage. Leukemia 1999; 13: 1859–1863.

    Article  CAS  Google Scholar 

  42. Yoon HJ, Choi IY, Kang MR, Kim SS, Muller MT, Spitzner JR et al. DNA topoisomerase II cleavage of telomeres in vitro and in vivo. Biochim Biophys Acta 1998; 1395: 110–120.

    Article  CAS  Google Scholar 

  43. Faraoni I, Turriziani M, Masci G, De Vecchis L, Shay J W, Bonmassar E et al. Decline in telomerase activity as a measure of tumor cell killing by antineoplastic agents in vitro. Clin Cancer Res 1997; 3: 579–585.

    CAS  PubMed  Google Scholar 

  44. Sawant SG, Gregoire V, Dhar S, Umbricht CB, Cvilic S, Sukumar S et al. Telomerase activity as a measure for monitoring radiocurability of tumor cells. FASEB J 1999; 13: 1047–1054.

    Article  CAS  Google Scholar 

  45. Akiyama M, Horiguchi-Yamada J, Saito S, Hoshi Y, Yamada O, Mizoguchi H et al. Cytostatic concentrations of anticancer agents do not affect telomerase activity of leukaemic cells in vitro. Eur J Cancer 1999; 35: 309–315.

    Article  CAS  Google Scholar 

  46. Nakagami Y, Ito M, Hara T, Inoue T . Loss of TRF2 by radiation-induced apoptosis in HL60 cells. Radial Med 2002; 20: 121–129.

    Google Scholar 

  47. Multani AS, Ozen M, Narayan S, Kumar V, Chandra J, McConkey DJ et al. Caspase-dependent apoptosis induced by telomere cleavage and TRF2 loss. Neoplasia 2000; 2: 339–345.

    Article  CAS  Google Scholar 

  48. Narayan S, Jaiswal AS, Multani AS, Pathak S . DNA damage-induced cell cycle checkpoints involve both p53-dependent and -independent pathways: role of telomere repeat binding factor 2. Br J Cancer 2001; 85: 898–901.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M Hauberg for her help with immunohistochemistry and E Dege for critically reading the manuscript. This work was supported in part by the ‘Kinder Krebs Initiative Buchholz-Seppensen-Holm’, Germany.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klapper, W., Qian, W., Schulte, C. et al. DNA damage transiently increases TRF2 mRNA expression and telomerase activity. Leukemia 17, 2007–2015 (2003). https://doi.org/10.1038/sj.leu.2403086

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403086

Keywords

This article is cited by

Search

Quick links