Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Biotechnical Methods Section BTS
  • Published:

Bio-Technical Methods (BTS)

Novel potential ALL low-risk markers revealed by gene expression profiling with new high-throughput SSH–CCS–PCR

Abstract

The current systems of risk grouping in pediatric acute lymphoblastic leukemia (ALL) fail to predict therapeutic success in 10–35% of patients. To identify better predictive markers of clinical behavior in ALL, we have developed an integrated approach for gene expression profiling that couples suppression subtractive hybridization, concatenated cDNA sequencing, and reverse transcriptase real-time quantitative PCR. Using this approach, a total of 600 differentially expressed genes were identified between t(4;11) ALL and pre-B ALL with no determinant chromosomal translocation. The expression of 67 genes was analyzed in different cytogenetic ALL subgroups and B lymphocytes isolated from healthy donors. Three genes, BACH1, TP53BPL, and H2B/S, were consistently expressed as a significant cluster associated with the low-risk ALL subgroups. A total of 42 genes were differentially expressed in ALL vs normal B lymphocytes, with no specific association with any particular ALL subgroups. The remaining 22 genes were part of a specific expression profile associated with the hyperdiploid, t(12;21), or t(4;11) subgroups. Using an unsupervised hierarchical cluster analysis, the discriminating power of these specific expression profiles allowed the clustering of patients according to their subgroups. These genes could help to understand the difference in treatment response and become therapeutical targets to improve ALL clinical outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Harrison CJ . The detection and significance of chromosomal abnormalities in childhood acute lymphoblastic leukaemia. Blood Rev 2001; 15: 49–59.

    Article  CAS  Google Scholar 

  2. Smith M, Arthur D, Camitta B, Caroll AJ, Crist W, Gaynon P et al. Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. J Clin Oncol 1996; 14: 18–24.

    Article  CAS  Google Scholar 

  3. Pui CH, Evans WE . Acute lymphoblastic leukemia. N Engl J Med 1998; 339: 605–615.

    Article  CAS  Google Scholar 

  4. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41–47.

    Article  CAS  Google Scholar 

  5. Yeoh E-J, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002; 1: 133–143.

    Article  CAS  Google Scholar 

  6. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1: 75–87.

    Article  CAS  Google Scholar 

  7. Chen J-S, Coustan-Smith E, Suzuki T, Neale GA, Mihara K, Pui C-H et al. Identification of novel markers for monitoring minimal residual disease in acute lymphoblastic leukemia. Blood 2001; 97: 2115–2120.

    Article  CAS  Google Scholar 

  8. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999; 286: 531–537.

    Article  CAS  Google Scholar 

  9. Kozian DH, Kirschbaum BJ . Comparative gene-expression analysis. Trends Biotech 1999; 17: 73–78.

    Article  CAS  Google Scholar 

  10. Stanton LW . Methods to profile gene expression. Trends Cardiovasc Med 2001; 11: 49–54.

    Article  CAS  Google Scholar 

  11. Wang A, Pierce A, Judson-Kremer K, Gaddis S, Aldaz M, Johnson DG et al. Rapid analysis of gene expression (RAGE) facilitates universal expression profiling. Nucleic Acids Res 1999; 27: 4609–4618.

    Article  CAS  Google Scholar 

  12. Andersson B, Lu J, Shen Y, Wentland MA, Gibbs RA . Simultaneous shotgun sequencing of multiple cDNA clones. DNA Seq 1997; 7: 63–70.

    Article  CAS  Google Scholar 

  13. Yu W, Andersson B, Worley KC, Muzny DM, Ding Y, Liu W et al. Large-scale concatenation cDNA sequencing. Genome Res 1997; 7: 353–358.

    Article  CAS  Google Scholar 

  14. Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 1996; 93: 6025–6030.

    Article  CAS  Google Scholar 

  15. Gurskaya NG, Diatchenko L, Chenchik A, Siebert PD, Khaspekov GL, Lukyanov KA et al. Equalizing cDNA subtraction based on selective suppression of polymerase chain reaction: cloning of Jurkat cell transcripts induced by phytohemagglutin and phorbol 12-myristate 13-acetate. Anal Biochem 1996; 240: 90–97.

    Article  CAS  Google Scholar 

  16. Chomczynski P, Sacchi N . Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 1987; 162: 156–159.

    CAS  Google Scholar 

  17. Gingras MC, Margolin JF . Differential expression of multiple unexpected genes during U937 cell and macrophage differentiation detected by suppressive subtractive hybridization. Exp Hematol 2000; 28: 65–76.

    Article  CAS  Google Scholar 

  18. Ewing B, Hillier L, Wendl MC, Green P . Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 1998; 8: 175–185.

    Article  CAS  Google Scholar 

  19. Ewing B, Green P . Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 1998; 8: 186–194.

    Article  CAS  Google Scholar 

  20. Gordon D, Desmarais C, Green P . Automated finishing with autofinish. Genome Res 2001; 11: 614–625.

    Article  CAS  Google Scholar 

  21. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  22. Peterson LE . Factor analysis of cluster-specific gene expression levels from cDNA microarrays. Comp Meth Prog Biomed 2002; 69: 179–188.

    Article  Google Scholar 

  23. Peterson LE . Software Report: CLUSFAVOR 5.0: hierarchical cluster and principal component analysis of microarray-based transcriptional profiles. Genome Biol 2002; 3: software 0002.1–0002.8.

  24. Birg F, Courcoul M, Rosnet O, Bardin F, Pebusque MJ, Marchetto S et al. Expression of the FMS/KIT-like gene FLT3 in human acute leukemias of the myeloid and lymphoid lineages. Blood 1992; 80: 2584–2593.

    CAS  Google Scholar 

  25. Hart AH, Corrick CM, Tymms MJ, Hertzog PJ, Kola I . Human ERG is a proto-oncogene with mitogenic and transforming activity. Oncogene 1995; 10: 1423–1430.

    CAS  PubMed  Google Scholar 

  26. Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997; 90: 5002–5012.

    CAS  Google Scholar 

  27. Small D, Levenstein M, Kim E, Carow C, Amin S, Rockwell P et al. STK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in CD34+ human bone marrow cells and is involved in the proliferation of early progenitor/stem cells. Proc Natl Acad Sci USA 1994; 91: 459–463.

    Article  CAS  Google Scholar 

  28. Tanner SM, Austin JL, Leone G, Rush LJ, Plass C, Heinonen K et al. BAALC, the human member of a novel mammalian neuroectoderm gene lineage, is implicated in hematopoiesis and acute leukemia. Proc Natl Acad Sci USA 2001; 98: 13901–13906.

    Article  CAS  Google Scholar 

  29. Loken MR, Shah VO, Hollander Z, Civin CI . Flow cytometric analysis of normal B lymphoid development. Pathol Immunopathol Res 1988; 7: 357–370.

    Article  CAS  Google Scholar 

  30. Oyake T, Itoh K, Motohashi H, Hayashi N, Hoshino H, Nishizawa M et al. Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Mol Cell Biol 1996; 16: 6083–6095.

    Article  CAS  Google Scholar 

  31. Motohashi H, Shavit JA, Igarashi K, Yamamoto M, Engel JD . The world according to Maf. Nucleic Acids Res 1997; 25: 2953–2959.

    Article  CAS  Google Scholar 

  32. Ahn J, Gruen JR . The genomic organization of the histone clusters on human 6p21.3. Mammalian Genome 1999; 10: 768–770.

    Article  CAS  Google Scholar 

  33. Haluska P, Saleem A, Rasheed Z, Ahmed F, Su EW, Liu LF, Rubin EH . Interaction between human topoisomerase I and a novel RING finger/arginine–serine protein. Nucleic Acids Res 1999; 27: 2538–2544.

    Article  CAS  Google Scholar 

  34. Zhou R, Wen H, Ao SZ . Identification of a novel gene encoding a p53-associated protein. Gene 1999; 235: 93–101.

    Article  CAS  Google Scholar 

  35. Ren C, Li L, Goltsov AA, Timme TL, Tahir SA, Wang J, Garza L et al. mRTVP-1, a novel p53 target gene with proapoptotic activities. Mol Cell Biol 2002; 22: 3345–3357.

    Article  CAS  Google Scholar 

  36. Byun DS, Chae KS, Ryu BK, Lee MG, Chi SG . Expression and mutation analyses of P53R2, a newly identified p53 target for DNA repair in gastric carcinoma. Int J Cancer 2002; 98: 718–723.

    Article  CAS  Google Scholar 

  37. Krug U, Ganser A, Koeffler HP . Tumor suppressor genes in normal and malignant hematopoiesis. Oncogene 2002; 21: 3475–3495.

    Article  CAS  Google Scholar 

  38. Piu CH, Boyett JM, Rivera GK, Hancock ML, Sandlund JT, Ribeiro RC et al. Long-term results of total therapy studies 11,12, and 13A for childhood acute lymphoblastic leukemia at St Jude Children's Research Hospital. Leukemia 2000; 14: 2286–2294.

    Article  Google Scholar 

  39. Ishii E, Eguchi H, Matsuzaki A, Koga H, Yanai F, Kuroda H et al. Outcome of acute lymphoblastic leukemia in children with AL90 regimen: impact of response to treatment and sex difference on prognostic factors. Med Pediatr Oncol 2001; 37: 10–19.

    Article  CAS  Google Scholar 

  40. Yan H, Dobbie Z, Gruber SB, Markowitz S, Romans K, Giardiello FM, Kinzler KW et al. Small changes in expression affect predisposition to tumorigenesis. Nat Genet 2002; 30: 25–26.

    Article  CAS  Google Scholar 

  41. Caballero OL, de Souza SJ, Brentani RR, Simpson AJ . Alternative spliced transcripts as cancer markers. Dis Markers 2001; 17: 67–75.

    Article  CAS  Google Scholar 

  42. Prasad J, Colwill K, Pawson T, Manley JL . The protein kinase Clk/Sty directly modulates SR protein activity: both hyper- and hypophosphorylation inhibit splicing. Mol Cell Biol 1999; 19: 6991–7000.

    Article  CAS  Google Scholar 

  43. Iggo RD, Jamieson DJ, MacNeill SA, Southgate J, McPheat J, Lane DP . P68 RNA helicase: identification of a nucleolar form and cloning of related genes containing a conserved intron in yeasts. Mol Cell Biol 1991; 11: 1326–1333.

    Article  CAS  Google Scholar 

  44. Neubauer G, King A, Rappsilber J, Calvio C, Watson M, Ajuh P et al. Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nat Genet 1998; 20: 46–50.

    Article  CAS  Google Scholar 

  45. Kurian KM, Watson CJ, Wyllie AH . DNA chip technology. J Pathol 1999; 187: 267–271.

    Article  CAS  Google Scholar 

  46. Chung S, Kim M, Choi WJ, Chung JK, Lee K . Expression of translationally controlled tumor protein mRNA in human colon cancer. Cancer Lett 2000; 156: 185–190.

    Article  CAS  Google Scholar 

  47. Yokota S, Yamamoto Y, Shimizu K, Momoi H, Kamikawa T, Yamaoka Y et al. Increased expression of cytosolic chaperonin CCT in human hepatocellular and colonic carcinoma. Cell Stress Chaperones 2001; 6: 345–350.

    Article  CAS  Google Scholar 

  48. Macmillan JC, Hudson JW, Bull S, Dennis JW, Swallow CJ . Comparative expression of the mitotic regulators SAK and PLK in colorectal cancer. Ann Surg Oncol 2001; 8: 729–740.

    Article  CAS  Google Scholar 

  49. Ray ME, Wistow G, Su YA, Meltzer PS, Trent JM . AIM1, a novel non-lens member of the βγ-crystallin superfamily, is associated with the control of tumorigenicity in human malignant melanoma. Proc Natl Acad Sci USA 1997; 94: 3229–3234.

    Article  CAS  Google Scholar 

  50. Vogt T, Kroiss M, McClelland M, Gruss C, Becker B, Bosserhoff AK et al. Deficiency of a novel retinoblastoma binding protein 2-homolog is a consistent feature of sporadic human melanoma skin cancer. Lab Invest 1999; 79: 1615–1627.

    CAS  PubMed  Google Scholar 

  51. Strohmaier H, Spruck CH, Kaiser P, Won K-A, Sangfelt O, Reed SI . Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature 2001; 413: 316–322.

    Article  CAS  Google Scholar 

  52. Liu J, Yuan Y, Huan J, Shen Z . Inhibition of breast and brain cancer cell growth by BCCIPα, an evolutionarily conserved nuclear protein that interacts with BRCA2. Oncogene 2001; 20: 336–345.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr C Philip Steuber and the TCCC Leukemia team for their collaboration, and Mary-Ann A Mastangelo for the technical support and advice with the RT-RQ-PCR technique. We acknowledge the contributions of the BCM-HGSC production team headed by Donna Muzny, the library team headed by Erica Sodergren, and the sequence instrumentation team headed by Graham Scott. We also thank Keelan Hamilton for providing the oligonucleotides used for primer walking and acknowledge the contribution of the cDNA group. We are also grateful to several members of the bio-informatics department including David Wheeler, Kim Worley, David Stefan, and Paul Havlak for their contributions toward this study.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, J., Gunaratne, P., Peterson, L. et al. Novel potential ALL low-risk markers revealed by gene expression profiling with new high-throughput SSH–CCS–PCR. Leukemia 17, 1891–1900 (2003). https://doi.org/10.1038/sj.leu.2403073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403073

Keywords

This article is cited by

Search

Quick links