Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight
  • Published:

Phosphorylation of tyrosine 393 in the kinase domain of Bcr-Abl influences the sensitivity towards imatinib in vivo

Abstract

The Bcr-Abl fusion protein arising through the t(9;22)(q34;q11) reciprocal translocation is the causative agent in chronic myeloid leukemia and a subset of acute lymphocytic leukemia. Imatinib mesylate is a specific inhibitor of the Bcr-Abl kinase and has shown promising results in clinical studies. The structural relation between the Bcr-Abl oncogene and the tyrosine kinase inhibitor imatinib has recently been elucidated by an elegant crystal structure analysis, emphasizing the importance of dephosphorylated tyrosine 393 (Tyr393) in Bcr-Abl for access of the inhibitor to the kinase domain. By mutating this tyrosine to phenylalanine and thereby mimicking a constitutively dephosphorylated state, we now show that Ba/F3 cells transformed by this mutant demonstrate an increased sensitivity towards imatinib in vivo. This effect is not due to an impaired kinase activity of Bcr-Abl Y393F, since a synthetic substrate is phosphorylated with similar kinetics. Treatment of Ba/F3 cells transfected with Bcr-Abl wild type with a phosphatase inhibitor diminished the effect of imatinib, but did not influence the growth of Ba/F3 cells transfected with Bcr-AblY393F. The results support the findings of the crystal structure and indicate that Tyr393 indeed plays a significant role for the sensitivity of Bcr-Abl towards imatinib in vivo. These data implicate the regulation of Tyr393 phosphorylation as a potential mechanism of imatinib resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Mauro MJ, O'Dwyer M, Heinrich MC, Druker BJ . STI571: a paradigm of new agents for cancer therapeutics. J Clin Oncol 2002; 20: 325–334.

    Article  CAS  Google Scholar 

  2. Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 2002; 346: 645–652.

    Article  CAS  Google Scholar 

  3. Ottmann OG, Druker BJ, Sawyers CL, Goldman JM, Reiffers J, Silver RT et al. A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias. Blood 2002; 100: 1965–1971.

    Article  CAS  Google Scholar 

  4. Hochhaus A, Kreil S, Corbin AS, La Rosee P, Muller MC, Lahaye T et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 2002; 16: 2190–2196.

    Article  CAS  Google Scholar 

  5. von Bubnoff N, Peschel C, Duyster J . Resistance of Philadelphia-chromosome positive leukemia towards the kinase inhibitor imatinib: a targeted oncoprotein strikes back. Leukemia (in press).

  6. Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J . Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 2000; 289: 1938–1942.

    Article  CAS  Google Scholar 

  7. Bai RY, Jahn T, Schrem S, Munzert G, Weidner KM, Wang JY et al. The SH2-containing adapter protein GRB10 interacts with BCR-ABL. Oncogene 1998; 17: 941–948.

    Article  CAS  Google Scholar 

  8. Bai RY, Ouyang T, Miething C, Morris SW, Peschel C, Duyster J . Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. Blood 2000; 96: 4319–4327.

    CAS  PubMed  Google Scholar 

  9. Wheeler TT, Broadhurst MK, Sadowski HB, Farr VC, Prosser CG . Stat5 phosphorylation status and DNA-binding activity in the bovine and murine mammary glands. Mol Cell Endocrinol 2001; 176: 39–48.

    Article  CAS  Google Scholar 

  10. Yang F, Liu Y, Bixby SD, Friedman JD, Shokat KM . Highly efficient green fluorescent protein-based kinase substrates. Anal Biochem 1999; 266: 167–173.

    Article  Google Scholar 

  11. Duyster J, Baskaran R, Wang JY . Src homology 2 domain as a specificity determinant in the c-Abl-mediated tyrosine phosphorylation of the RNA polymerase II carboxyl-terminal repeated domain. Proc Natl Acad Sci USA 1995; 92: 1555–1559.

    Article  CAS  Google Scholar 

  12. Sawyers CL . Cancer treatment in the STI571 era: what will change? J Clin Oncol 2001; 19: 13S–16S.

    CAS  PubMed  Google Scholar 

  13. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001; 293: 876–880.

    Article  CAS  Google Scholar 

  14. Weisberg E, Griffin JD . Mechanisms of resistance imatinib (STI571) in preclinical models and in leukemia patients. Drug Resist Updat 2001; 4: 22–28.

    Article  CAS  Google Scholar 

  15. le Coutre P, Tassi E, Varella-Garcia M, Barni R, Mologni L, Cabrita G et al. Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification. Blood 2000; 95: 1758–1766.

    CAS  PubMed  Google Scholar 

  16. Gambacorti-Passerini C, Barni R, le Coutre P, Zucchetti M, Cabrita G, Cleris L et al. Role of alpha1 acid glycoprotein in the in vivo resistance of human BCR-ABL(+) leukemic cells to the abl inhibitor STI571. J Natl Cancer Inst 2000; 92: 1641–1650.

    Article  CAS  Google Scholar 

  17. von Bubnoff N, Schneller F, Peschel C, Duyster J . BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet 2002; 359: 487–491.

    Article  CAS  Google Scholar 

  18. Brasher BB, Van Etten RA . c-Abl has high intrinsic tyrosine kinase activity that is stimulated by mutation of the Src homology 3 domain and by autophosphorylation at two distinct regulatory tyrosines. J Biol Chem 2000; 275: 35631–35637.

    Article  CAS  Google Scholar 

  19. Dorey K, Engen JR, Kretzschmar J, Wilm M, Neubauer G, Schindler T et al. Phosphorylation and structure-based functional studies reveal a positive and a negative role for the activation loop of the c-Abl tyrosine kinase. Oncogene 2001; 20: 8075–8084.

    Article  CAS  Google Scholar 

  20. Cortez D, Kadlec L, Pendergast AM . Structural and signaling requirements for BCR-ABL-mediated transformation and inhibition of apoptosis. Mol Cell Biol 1995; 15: 5531–5541.

    Article  CAS  Google Scholar 

  21. Sattler M, Verma S, Byrne CH, Shrikhande G, Winkler T, Algate PA et al. BCR/ABL directly inhibits expression of SHIP, an SH2-containing polyinositol-5-phosphatase involved in the regulation of hematopoiesis. Mol Cell Biol 1999; 19: 7473–7480.

    Article  CAS  Google Scholar 

  22. Wisniewski D, Strife A, Swendeman S, Erdjument-Bromage H, Geromanos S, Kavanaugh WM et al. A novel SH2-containing phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase (SHIP2) is constitutively tyrosine phosphorylated and associated with src homologous and collagen gene (SHC) in chronic myelogenous leukemia progenitor cells. Blood 1999; 93: 2707–2720.

    CAS  PubMed  Google Scholar 

  23. Liedtke M, Pandey P, Kumar S, Kharbanda S, Kufe D . Regulation of Bcr-Abl-induced SAP kinase activity and transformation by the SHPTP1 protein tyrosine phosphatase. Oncogene 1998; 17: 1889–1892.

    Article  CAS  Google Scholar 

  24. LaMontagne Jr KR, Flint AJ, Franza Jr BR, Pandergast AM, Tonks NK . Protein tyrosine phosphatase 1B antagonizes signalling by oncoprotein tyrosine kinase p210 bcr-abl in vivo. Mol Cell Biol 1998; 18: 2965–2975.

    Article  CAS  Google Scholar 

  25. Donato NJ, Wu JY, Stapley J, Gallick G, Lin H, Arlinghaus R et al. BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 2003; 101: 690–698.

    Article  CAS  Google Scholar 

  26. Warmuth M, Simon N, Mitina O, Mathes R, Fabbro D, Manley PW et al. Dual-specific Src and Abl kinase inhibitors, PP1 and CGP76030, inhibit growth and survival of cells expressing imatinib mesylate-resistant Bcr-Abl kinases. Blood 2003; 101: 664–672.

    Article  CAS  Google Scholar 

  27. Etienne G, Lagarde V, Reiffers J, Melo J, Mahon F . Effects of the tyrosine kinase inhibitor PP1 on STI571-resistant BCR-ABL positive cell lines. Blood 2001; 98: 617a; #2586.

Download references

Acknowledgements

We are gratefully indebted to Dr H Gschaidmeier (Novartis Pharma, Nürnberg, Germany) and Dr E Buchdunger (Novartis Pharma, Basel, Switzerland) for providing imatinib and to Dr T Wheeler (Dairy Science, AgResearch, Ruakura Research Centre, Hamilton, New Zealand) for the phospho-STAT5 antibody.

This work was supported by a grant to JD and CP from the BMBF, German national genome Project No. 01-GS-0105 and 01-GS-0155 and by a grant from the Mildred-Scheel Stiftung to JD. CM is supported by a fellowship from the Deutsche Jose Carreras Leukämie Stiftung (DJCLS 2001/NAT-2).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miething, C., Mugler, C., Grundler, R. et al. Phosphorylation of tyrosine 393 in the kinase domain of Bcr-Abl influences the sensitivity towards imatinib in vivo. Leukemia 17, 1695–1699 (2003). https://doi.org/10.1038/sj.leu.2403040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403040

Keywords

This article is cited by

Search

Quick links