Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Recent advances in the development of anticancer agents targeting cell death inhibitors in the Bcl-2 protein family

Abstract

Hematopoietic malignancies frequently are characterized by defects in apoptosis signaling. This renders the malignant cells resistant to endogenous apoptotic stimuli, as well as exogenous stimuli, such as chemotherapy drugs and radiation. The defective apoptosis seen in human cancers often results from overexpression of antiapoptotic proteins in the Bcl-2 protein family, particularly Bcl-2 and Bcl-XL. A great deal of effort is currently aimed at developing novel agents to inhibit the expression or function of these proteins. Antisense agents directed against Bcl-2 mRNA are showing considerable promise in clinical trials. In addition, detailed knowledge of the structures of Bcl-2 and Bcl-XL, coupled with high-throughput and computer-assisted screening of chemical libraries, has led to the identification of a number of short peptides and small organic molecules capable of inhibiting Bcl-2 and Bcl-XL function. These newly described agents hold considerable promise for enhancing the chemo- and radiation sensitivities of Bcl-2- and Bcl-XL-overexpressing cancers. This review will highlight recent advances in the development and testing of agents targeting cell death inhibitors in the Bcl-2 protein family

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Cleary ML, Sklar J . Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci USA 1985; 82: 7439–7443.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Tsujimoto Y, Cossman J, Jaffe E, Croce CM . Involvement of the bcl-2 gene in human follicular lymphoma. Science 1985; 228: 1440–1443.

    CAS  PubMed  Google Scholar 

  3. Vaux DL, Cory S, Adams JM . Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 1988; 335: 440–442.

    Article  CAS  PubMed  Google Scholar 

  4. Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ . Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990; 348: 334–336.

    Article  CAS  PubMed  Google Scholar 

  5. Korsmeyer SJ . Regulators of cell death. Trends Genet 1995; 11: 101–105.

    CAS  PubMed  Google Scholar 

  6. Lotem J, Sachs L . Regulation by bcl-2, c-myc, and p53 of susceptibility to induction of apoptosis by heat shock and cancer chemotherapy compounds in differentiation-competent and defective myeloid leukemic cells. Cell Growth Differ 1993; 4: 41–47.

    CAS  PubMed  Google Scholar 

  7. Miyashita T, Reed JC . Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood 1993; 81: 151–157.

    CAS  PubMed  Google Scholar 

  8. Walton MI, Whysong D, O'Connor PM, Hockenbery D, Korsmeyer SJ, Kohn KW . Constitutive expression of human Bcl-2 modulates nitrogen mustard and camptothecin induced apoptosis. Cancer Res 1993; 53: 1853–1861.

    CAS  PubMed  Google Scholar 

  9. Sentman CL, Shutter JR, Hockenbery D, Kanagawa O, Korsmeyer SJ . Bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 1991; 67: 879–888.

    CAS  PubMed  Google Scholar 

  10. Strasser A, Harris AW, Cory S . bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell 1991; 67: 889–899.

    CAS  PubMed  Google Scholar 

  11. Nunez G, London L, Hockenbery D, Alexander M, McKearn JP, Korsmeyer SJ . Deregulated Bcl-2 gene expression selectively prolongs survival of growth factor-deprived hemopoietic cell lines. J Immunol 1990; 144: 3602–3610.

    CAS  PubMed  Google Scholar 

  12. Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA et al. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 1993; 74: 597–608.

    CAS  PubMed  Google Scholar 

  13. Kozopas KM, Yang T, Buchan HL, Zhou P, Craig RW . MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci USA 1993; 90: 3516–3520.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang T, Buchan HL, Townsend KJ, Craig RW . MCL-1, a member of the BLC-2 family, is induced rapidly in response to signals for cell differentiation or death, but not to signals for cell proliferation. J Cell Physiol 1996; 166: 523–536.

    CAS  PubMed  Google Scholar 

  15. Zhou P, Qian L, Kozopas KM, Craig RW . Mcl-1, a Bcl-2 family member, delays the death of hematopoietic cells under a variety of apoptosis-inducing conditions. Blood 1997; 89: 630–643.

    CAS  PubMed  Google Scholar 

  16. Oltvai ZN, Milliman CL, Korsmeyer SJ . Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993; 74: 609–619.

    Article  CAS  PubMed  Google Scholar 

  17. Campos L, Rouault JP, Sabido O, Oriol P, Roubi N, Vasselon C et al. High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood 1993; 81: 3091–3096.

    CAS  PubMed  Google Scholar 

  18. Maung ZT, MacLean FR, Reid MM, Pearson AD, Proctor SJ, Hamilton PJ et al. The relationship between bcl-2 expression and response to chemotherapy in acute leukaemia. Br J Haematol 1994; 88: 105–109.

    CAS  PubMed  Google Scholar 

  19. Porwit-MacDonald A, Ivory K, Wilkinson S, Wheatley K, Wong L, Janossy G . Bcl-2 protein expression in normal human bone marrow precursors and in acute myelogenous leukemia. Leukemia 1995; 9: 1191–1198.

    CAS  PubMed  Google Scholar 

  20. Stoetzer OJ, Nussler V, Darsow M, Gullis E, Pelka-Fleischer R, Scheel U et al. Association of bcl-2, bax, bcl-xL and interleukin-1 beta-converting enzyme expression with initial response to chemotherapy in acute myeloid leukemia. Leukemia 1996; 10: S18–S22.

    PubMed  Google Scholar 

  21. Karakas T, Maurer U, Weidmann E, Miething CC, Hoelzer D, Bergmann L . High expression of bcl-2 mRNA as a determinant of poor prognosis in acute myeloid leukemia. Ann Oncol 1998; 9: 159–165.

    CAS  PubMed  Google Scholar 

  22. Bincoletto C, Saad ST, da Silva ES, Queiroz ML . Haematopoietic response and bcl-2 expression in patients with acute myeloid leukaemia. Eur J Haematol 1999; 62: 38–42.

    CAS  PubMed  Google Scholar 

  23. Ong YL, McMullin MF, Bailie KE, Lappin TR, Jones FG, Irvine AE . High bax expression is a good prognostic indicator in acute myeloid leukaemia. Br J Haematol 2000; 111: 182–189.

    CAS  PubMed  Google Scholar 

  24. Finn LS, Viswanatha DS, Belasco JB, Snyder H, Huebner D, Sorbara L et al. Primary follicular lymphoma of the testis in childhood. Cancer 1999; 85: 1626–1635.

    CAS  PubMed  Google Scholar 

  25. Lorsbach RB, Shay-Seymore D, Moore J, Banks PM, Hasserjian RP, Sandlund JT et al. Clinicopathologic analysis of follicular lymphoma occurring in children. Blood 2002; 99: 1959–1964.

    CAS  PubMed  Google Scholar 

  26. Adachi M, Tefferi A, Greipp PR, Kipps TJ, Tsujimoto Y. Preferential linkage of bcl-2 to immunoglobulin light chain gene in chronic lymphocytic leukemia. J Exp Med 1990; 171: 559–564.

    CAS  PubMed  Google Scholar 

  27. Raghoebier S, van Krieken JH, Kluin-Nelemans JC, Gillis A, van Ommen GJ, Ginsberg AM et al. Oncogene rearrangements in chronic B-cell leukemia. Blood 1991; 77: 1560–1564.

    CAS  PubMed  Google Scholar 

  28. Bannerji R, Byrd JC . Update on the biology of chronic lymphocytic leukemia. Curr Opin Oncol 2000; 12: 22–29.

    CAS  PubMed  Google Scholar 

  29. Hanada M, Delia D, Aiello A, Stadtmauer E, Reed JC . bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood 1993; 82: 1820–1828.

    CAS  PubMed  Google Scholar 

  30. Robertson LE, Plunkett W, McConnell K, Keating MJ, McDonnell TJ . Bcl-2 expression in chronic lymphocytic leukemia and its correlation with the induction of apoptosis and clinical outcome. Leukemia 1996; 10: 456–459.

    CAS  PubMed  Google Scholar 

  31. Marschitz I, Tinhofer I, Hittmair A, Egle A, Kos M, Greil R . Analysis of Bcl-2 protein expression in chronic lymphocytic leukemia. A comparison of three semiquantitation techniques. Am J Clin Pathol 2000; 113: 219–229.

    CAS  PubMed  Google Scholar 

  32. Faderl S, Keating MJ, Do KA, Liang SY, Kantarjian HM, O'Brien S et al. Expression profile of 11 proteins and their prognostic significance in patients with chronic lymphocytic leukemia (CLL). Leukemia 2002; 16: 1045–1052.

    CAS  PubMed  Google Scholar 

  33. Pepper C, Bentley P, Hoy T . Regulation of clinical chemoresistance by bcl-2 and bax oncoproteins in B-cell chronic lymphocytic leukaemia. Br J Haematol 1996; 95: 513–517.

    CAS  PubMed  Google Scholar 

  34. Pepper C, Hoy T, Bentley DP . Bcl-2/Bax ratios in chronic lymphocytic leukaemia and their correlation with in vitro apoptosis and clinical resistance. Br J Cancer 1997; 76: 935–938.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Molica S, Dattilo A, Giulino C, Levato D, Levato L . Increased bcl-2/bax ratio in B-cell chronic lymphocytic leukemia is associated with a progressive pattern of disease. Haematologica 1998; 83: 1122–1124.

    CAS  PubMed  Google Scholar 

  36. Hermine O, Haioun C, Lepage E, d'Agay MF, Briere J, Lavignac C et al. Prognostic significance of bcl-2 protein expression in aggressive non-Hodgkin's lymphoma. Groupe d'Etude des Lymphomes de l'Adulte (GELA). Blood 1996; 87: 265–272.

    CAS  PubMed  Google Scholar 

  37. Hill ME, MacLennan KA, Cunningham DC, Vaughan Hudson B, Burke M, Clarke P et al. Prognostic significance of BCL-2 expression and bcl-2 major breakpoint region rearrangement in diffuse large cell non-Hodgkin's lymphoma: a British National Lymphoma Investigation Study. Blood 1996; 88: 1046–1051.

    CAS  PubMed  Google Scholar 

  38. Harada N, Hata H, Yoshida M, Soniki T, Nagasaki A, Kuribayashi N et al. Expression of Bcl-2 family of proteins in fresh myeloma cells. Leukemia 1998; 12: 1817–1820.

    CAS  PubMed  Google Scholar 

  39. Ten Berge RL, Meijer CJ, Dukers DF, Kummer JA, Bladergroen BA, Vos W et al. Expression levels of apoptosis-related proteins predict clinical outcome in anaplastic large cell lymphoma. Blood 2002; 99: 4540–4546.

    CAS  PubMed  Google Scholar 

  40. Grover R, Wilson GD . Bcl-2 expression in malignant melanoma and its prognostic significance. Eur J Surg Oncol 1996; 22: 347–349.

    CAS  PubMed  Google Scholar 

  41. Selzer E, Schlagbauer-Wadl H, Okamoto I, Pehamberger H, Potter R, Jansen B . Expression of Bcl-2 family members in human melanocytes, in melanoma metastases and in melanoma cell lines. Melanoma Res 1998; 8: 197–203.

    CAS  PubMed  Google Scholar 

  42. Vlaykova T, Talve L, Hahka-Kemppinen M, Hernberg M, Muhonen T, Collan Y et al. Immunohistochemically detectable bcl-2 expression in metastatic melanoma: association with survival and treatment response. Oncology 2002; 62: 259–268.

    CAS  PubMed  Google Scholar 

  43. Joensuu H, Pylkkanen L, Toikkanen S . Bcl-2 protein expression and long-term survival in breast cancer. Am J Pathol 1994; 145: 1191–1198.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Silvestrini R, Veneroni S, Daidone MG, Benini E, Boracchi P, Mezzetti M et al. The Bcl-2 protein: a prognostic indicator strongly related to p53 protein in lymph node-negative breast cancer patients. J Natl Cancer Inst 1994; 86: 499–504.

    CAS  PubMed  Google Scholar 

  45. Hellemans P, van Dam PA, Weyler J, van Oosterom AT, Buytaert P, Van Marck E . Prognostic value of bcl-2 expression in invasive breast cancer. Br J Cancer 1995; 72: 354–360.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu J, Shao ZM, Shen ZZ, Lu JS, Han QX, Fontana JA et al. Significance of apoptosis and apoptotic-related proteins, Bcl-2, and Bax in primary breast cancer. Breast J 2000; 6: 44–52.

    CAS  PubMed  Google Scholar 

  47. McDonnell TJ, Troncoso P, Brisbay SM, Logothetis C, Chung LW, Hsieh JT et al. Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res 1992; 52: 6940–6944.

    CAS  PubMed  Google Scholar 

  48. Colombel M, Symmans F, Gil S, O'Toole KM, Chopin D, Benson M et al. Detection of the apoptosis-suppressing oncoprotein bc1-2 in hormone-refractory human prostate cancers. Am J Pathol 1993; 143: 390–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bauer JJ, Sesterhenn IA, Mostofi FK, McLeod DG, Srivastava S, Moul JW . Elevated levels of apoptosis regulator proteins p53 and bcl-2 are independent prognostic biomarkers in surgically treated clinically localized prostate cancer. J Urol 1996; 156: 1511–1516.

    CAS  PubMed  Google Scholar 

  50. Jiang SX, Sato Y, Kuwao S, Kameya T . Expression of bcl-2 oncogene protein is prevalent in small cell lung carcinomas. J Pathol 1995; 177: 135–138.

    CAS  PubMed  Google Scholar 

  51. Dingemans AM, Witlox MA, Stallaert RA, van der Valk P, Postmus PE, Giaccone G . Expression of DNA topoisomerase IIalpha and topoisomerase IIbeta genes predicts survival and response to chemotherapy in patients with small cell lung cancer. Clin Cancer Res 1999; 5: 2048–2058.

    CAS  PubMed  Google Scholar 

  52. Sinicrope FA, Hart J, Michelassi F, Lee JJ . Prognostic value of bcl-2 oncoprotein expression in stage II colon carcinoma. Clin Cancer Res 1995; 1: 1103–1110.

    CAS  PubMed  Google Scholar 

  53. Ilyas M, Hao XP, Wilkinson K, Tomlinson IP, Abbasi AM, Forbes A et al. Loss of Bcl-2 expression correlates with tumour recurrence in colorectal cancer. Gut 1998; 43: 383–387.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Gazzaniga P, Gradilone A, Vercillo R, Gandini O, Silvestri I, Napolitano M et al. Bcl-2/bax mRNA expression ratio as prognostic factor in low-grade urinary bladder cancer. Int J Cancer 1996; 69: 100–104.

    CAS  PubMed  Google Scholar 

  55. Pollack A, Wu CS, Czerniak B, Zagars GK, Benedict WF, McDonnell TJ . Abnormal bcl-2 and pRb expression are independent correlates of radiation response in muscle-invasive bladder cancer. Clin Cancer Res 1997; 3: 1823–1829.

    CAS  PubMed  Google Scholar 

  56. Kong G, Shin KY, Oh YH, Lee JJ, Park HY, Woo YN et al. Bcl-2 and p53 expressions in invasive bladder cancers. Acta Oncol 1998; 37: 715–720.

    CAS  PubMed  Google Scholar 

  57. Ye D, Li H, Qian S, Sun Y, Zheng J, Ma Y . bcl-2/bax expression and p53 gene status in human bladder cancer: relationship to early recurrence with intravesical chemotherapy after resection. J Urol 1998; 160: 2025–2028.

    CAS  PubMed  Google Scholar 

  58. Hasegawa T, Matsuno Y, Shimoda T, Hirohashi S, Hirose T, Sano T . Frequent expression of bcl-2 protein in solitary fibrous tumors. Jpn J Clin Oncol 1998; 28: 86–91.

    CAS  PubMed  Google Scholar 

  59. Pallis M, Zhu YM, Russell NH . Bcl-x(L) is heterogenously expressed by acute myeloblastic leukaemia cells and is associated with autonomous growth in vitro and with P-glycoprotein expression. Leukemia 1997; 11: 945–949.

    CAS  PubMed  Google Scholar 

  60. Deng G, Lane C, Kornblau S, Goodacre A, Snell V, Andreeff M et al. Ratio of bcl-xshort to bcl-xlong is different in good- and poor-prognosis subsets of acute myeloid leukemia. Mol Med 1998; 4: 158–164.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Tu Y, Renner S, Xu F, Fleishman A, Taylor J, Weisz J et al. BCL-X expression in multiple myeloma: possible indicator of chemoresistance. Cancer Res 1998; 58: 256–262.

    CAS  PubMed  Google Scholar 

  62. Kirsh EJ, Baunoch DA, Stadler WM . Expression of bcl-2 and bcl-X in bladder cancer. J Urol 1998; 159: 1348–1353.

    CAS  PubMed  Google Scholar 

  63. Aebersold DM, Kollar A, Beer KT, Laissue J, Greiner RH, Djonov V . Involvement of the hepatocyte growth factor/scatter factor receptor c-met and of Bcl-xL in the resistance of oropharyngeal cancer to ionizing radiation. Int J Cancer 2001; 96: 41–54.

    CAS  PubMed  Google Scholar 

  64. Olopade OI, Adeyanju MO, Safa AR, Hagos F, Mick R, Thompson CB et al. Overexpression of BCL-x protein in primary breast cancer is associated with high tumor grade and nodal metastases. Cancer J Sci Am 1997; 3: 230–237.

    CAS  PubMed  Google Scholar 

  65. Friess H, Lu Z, Graber HU, Zimmermann A, Adler G, Korc M et al. bax, but not bcl-2, influences the prognosis of human pancreatic cancer. Gut 1998; 43: 414–421.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Friess H, Lu Z, Andren-Sandberg A, Berberat P, Zimmermann A, Adler G et al. Moderate activation of the apoptosis inhibitor bcl-xL worsens the prognosis in pancreatic cancer. Ann Surg 1998; 228: 780–787.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Miyamoto Y, Hosotani R, Wada M, Lee JU, Koshiba T, Fujimoto K et al. Immunohistochemical analysis of Bcl-2, Bax, Bcl-X, and Mcl-1 expression in pancreatic cancers. Oncology 1999; 56: 73–82.

    CAS  PubMed  Google Scholar 

  68. Tang L, Tron VA, Reed JC, Mah KJ, Krajewska M, Li G et al. Expression of apoptosis regulators in cutaneous malignant melanoma. Clin Cancer Res 1998; 4: 1865–1871.

    CAS  PubMed  Google Scholar 

  69. Leiter U, Schmid RM, Kaskel P, Peter RU, Krahn G . Antiapoptotic bcl-2 and bcl-xL in advanced malignant melanoma. Arch Dermatol Res 2000; 292: 225–232.

    CAS  PubMed  Google Scholar 

  70. Kaufmann SH, Karp JE, Svingen PA, Krajewski S, Burke PJ, Gore SD et al. Elevated expression of the apoptotic regulator Mcl-1 at the time of leukemic relapse. Blood 1998; 91: 991–1000.

    CAS  PubMed  Google Scholar 

  71. Kitada S, Andersen J, Akar S, Zapata JM, Takayama S, Krajewski S et al. Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with in vitro and in vivo chemoresponses. Blood 1998; 91: 3379–3389.

    CAS  PubMed  Google Scholar 

  72. Zhang B, Gojo I, Fenton RG . Myeloid cell factor-1 is a critical survival factor for multiple myeloma. Blood 2002; 99: 1885–1893.

    CAS  PubMed  Google Scholar 

  73. Shigemasa K, Katoh O, Shiroyama Y, Mihara S, Mukai K, Nagai N et al. Increased MCL-1 expression is associated with poor prognosis in ovarian carcinomas. Jpn J Cancer Res 2002; 93: 542–550.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wei LH, Kuo ML, Chen CA, Chou CH, Cheng WF, Chang MC et al. The anti-apoptotic role of interleukin-6 in human cervical cancer is mediated by up-regulation of Mcl-1 through a PI 3-K/Akt pathway. Oncogene 2001; 20: 5799–5809.

    CAS  PubMed  Google Scholar 

  75. Zong WX, Edelstein LC, Chen C, Bash J, Gelinas C . The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-kappaB that blocks TNFalpha-induced apoptosis. Genes Dev 1999; 13: 382–387.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hinz M, Loser P, Mathas S, Krappmann D, Dorken B, Scheidereit C . Constitutive NF-kappaB maintains high expression of a characteristic gene network, including CD40, CD86, and a set of antiapoptotic genes in Hodgkin/Reed–Sternberg cells. Blood 2001; 97: 2798–2807.

    CAS  PubMed  Google Scholar 

  77. Park IC, Lee SH, Whang DY, Hong WS, Choi SS, Shin HS et al. Expression of a novel Bcl-2 related gene, Bfl-1, in various human cancers and cancer cell lines. Anticancer Res 1997; 17: 4619–4622.

    CAS  PubMed  Google Scholar 

  78. Reed JC, Cuddy M, Haldar S, Croce C, Nowell P, Makover D et al. BCL2-mediated tumorigenicity of a human T-lymphoid cell line: synergy with MYC and inhibition by BCL2 antisense. Proc Natl Acad Sci USA 1990; 87: 3660–3664.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Reed JC, Stein C, Subasinghe C, Haldar S, Croce CM, Yum S et al. Antisense-mediated inhibition of BCL2 protooncogene expression and leukemic cell growth and survival: comparisons of phosphodiester and phosphorothioate oligodeoxynucleotides. Cancer Res 1990; 50: 6565–6570.

    CAS  PubMed  Google Scholar 

  80. Campos L, Sabido O, Rouault JP, Guyotat D . Effects of BCL-2 antisense oligodeoxynucleotides on in vitro proliferation and survival of normal marrow progenitors and leukemic cells. Blood 1994; 84: 595–600.

    CAS  PubMed  Google Scholar 

  81. Keith FJ, Bradbury DA, Zhu YM, Russell NH . Inhibition of bcl-2 with antisense oligonucleotides induces apoptosis and increases the sensitivity of AML blasts to Ara-C. Leukemia 1995; 9: 131–138.

    CAS  PubMed  Google Scholar 

  82. Kitada S, Miyashita T, Tanaka S, Reed JC . Investigations of antisense oligonucleotides targeted against bcl-2 RNAs. Antisense Res Dev 1993; 3: 157–169.

    CAS  PubMed  Google Scholar 

  83. Kitada S, Takayama S, De Riel K, Tanaka S, Reed JC . Reversal of chemoresistance of lymphoma cells by antisense-mediated reduction of bcl-2 gene expression. Antisense Res Dev 1994; 4: 71–79.

    CAS  PubMed  Google Scholar 

  84. Reed JC, Kitada S, Takayama S, Miyashita T . Regulation of chemoresistance by the bcl-2 oncoprotein in non-Hodgkin's lymphoma and lymphocytic leukemia cell lines. Ann Oncol 1994; 5 (Suppl. 1): 61–65.

    PubMed  Google Scholar 

  85. Van de Donk NW, Kamphuis MM, van Dijk M, Borst HP, Bloem AC, Lokhorst HM . Chemosensitization of myeloma plasma cells by an antisense-mediated downregulation of Bcl-2 protein. Leukemia 2003; 17: 211–219.

    CAS  PubMed  Google Scholar 

  86. Cotter FE, Johnson P, Hall P, Pocock C, al Mahdi N, Cowell JK et al. Antisense oligonucleotides suppress B-cell lymphoma growth in a SCID-hu mouse model. Oncogene 1994; 10: 3049–3055.

    Google Scholar 

  87. Klasa RJ, Bally MB, Ng R, Goldie JH, Gascoyne RD, Wong FM . Eradication of human non-Hodgkin's lymphoma in SCID mice by BCL-2 antisense oligonucleotides combined with low-dose cyclophosphamide. Clin Cancer Res 2000; 6: 2492–2500.

    CAS  PubMed  Google Scholar 

  88. Ziegler A, Luedke GH, Fabbro D, Altmann KH, Stahel RA, Zangemeister-Wittke U . Induction of apoptosis in small-cell lung cancer cells by an antisense oligodeoxynucleotide targeting the Bcl-2 coding sequence. J Natl Cancer Inst 1997; 89: 1027–1036.

    CAS  PubMed  Google Scholar 

  89. Pepper C, Thomas A, Hoy T, Cotter F, Bentley P . Antisense-mediated suppression of Bcl-2 highlights its pivotal role in failed apoptosis in B-cell chronic lymphocytic leukaemia. Br J Haematol 1999; 107: 611–615.

    CAS  PubMed  Google Scholar 

  90. Vu UE, Pavletic ZS, Wang X, Joshi SS . Increased cytotoxicity against B-chronic lymphocytic leukemia by cellular manipulations: potentials for therapeutic use. Leukemia Lymphoma 2000; 39: 573–582.

    CAS  PubMed  Google Scholar 

  91. Webb A, Cunningham D, Cotter F, Clarke PA, di Stefano F, Ross P et al. BCL-2 antisense therapy in patients with non-Hodgkin lymphoma. Lancet 1997; 349: 1137–1141.

    CAS  PubMed  Google Scholar 

  92. Waters JS, Webb A, Cunningham D, Clarke PA, Raynaud F, di Stefano F et al. Phase I clinical and pharmacokinetic study of bcl-2 antisense oligonucleotide therapy in patients with non-Hodgkin's lymphoma. J Clin Oncol 2000; 18: 1812–1823.

    CAS  PubMed  Google Scholar 

  93. Marcucci G, Byrd JC, Dai G, Klisovic MI, Kourlas PJ, Young DC et al. Phase 1 and pharmacodynamic studies of G3139, a Bcl-2 antisense oligonucleotide, in combination with chemotherapy in refractory or relapsed acute leukemia. Blood 2003; 101: 425–432.

    CAS  PubMed  Google Scholar 

  94. Jansen B, Wacheck V, Heere-Ress E, Schlagbauer-Wadl H, Hoeller C, Lucas T et al. Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet 2000; 356: 1728–1733.

    CAS  PubMed  Google Scholar 

  95. Jansen B, Schlagbauer-Wadl H, Brown BD, Bryan RN, van Elsas A, Muller M et al. bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nat Med 1998; 4: 232–234.

    CAS  PubMed  Google Scholar 

  96. Miyake H, Tolcher A, Gleave ME . Antisense Bcl-2 oligodeoxynucleotides inhibit progression to androgen-independence after castration in the Shionogi tumor model. Cancer Res 1999; 59: 4030–4044.

    CAS  PubMed  Google Scholar 

  97. Gleave M, Tolcher A, Miyake H, Nelson C, Brown B, Beraldi E et al. Progression to androgen independence is delayed by adjuvant treatment with antisense Bcl-2 oligodeoxynucleotides after castration in the LNCaP prostate tumor model. Clin Cancer Res 1999; 5: 2891–2898.

    CAS  PubMed  Google Scholar 

  98. Leung S, Miyake H, Zellweger T, Tolcher A, Gleave ME . Synergistic chemosensitization and inhibition of progression to androgen independence by antisense Bcl-2 oligodeoxynucleotide and paclitaxel in the LNCaP prostate tumor model. Int J Cancer 2001; 91: 846–850.

    CAS  PubMed  Google Scholar 

  99. Miyake H, Hara I, Kamidono S, Gleave ME . Novel therapeutic strategy for advanced prostate cancer using antisense oligode-oxynucleotides targeting anti-apoptotic genes upregulated after androgen withdrawal to delay androgen-independent progression and enhance chemosensitivity. Int J Urol 2001; 8: 337–349.

    CAS  PubMed  Google Scholar 

  100. Morris MJ, Tong WP, Cordon-Cardo C, Drobnjak M, Kelly WK, Slovin SF et al. Phase I trial of BCL-2 antisense oligonucleotide (G3139) administered by continuous intravenous infusion in patients with advanced cancer. Clin Cancer Res 2002; 8: 679–683.

    CAS  PubMed  Google Scholar 

  101. Chi KN, Gleave ME, Klasa R, Murray N, Bryce C, Lopes de Menezes DE et al. A phase I dose-finding study of combined treatment with an antisense Bcl-2 oligonucleotide (Genasense) and mitoxantrone in patients with metastatic hormone-refractory prostate cancer. Clin Cancer Res 2001; 7: 3920–3927.

    CAS  PubMed  Google Scholar 

  102. Tolcher AW . Preliminary phase I results of G3139 (bcl-2 antisense oligonucleotide) therapy in combination with docetaxel in hormone-refractory prostate cancer. Semin Oncol 2001; 28 (Suppl. 15): 67–70.

    CAS  PubMed  Google Scholar 

  103. Lopes de Menezes DE, Hudon N, McIntosh N, Mayer LD . Molecular and pharmacokinetic properties associated with the therapeutics of bcl-2 antisense oligonucleotide G3139 combined with free and liposomal doxorubicin. Clin Cancer Res 2000; 6: 2891–2902.

    CAS  PubMed  Google Scholar 

  104. Duggan BJ, Maxwell P, Kelly JD, Canning P, Anderson NH, Keane PF et al. The effect of antisense Bcl-2 oligonucleotides on Bcl-2 protein expression and apoptosis in human bladder transitional cell carcinoma. J Urol 2001; 166: 1098–1105.

    CAS  PubMed  Google Scholar 

  105. Tortora G, Caputo R, Damiano V, Fontanini G, Melisi D, Veneziani BM et al. Oral administration of a novel taxane, an antisense oligonucleotide targeting protein kinase A, and the epidermal growth factor receptor inhibitor Iressa causes cooperative antitumor and antiangiogenic activity. Clin Cancer Res 2001; 7: 4156–4163.

    CAS  PubMed  Google Scholar 

  106. Minn AJ, Rudin CM, Boise LH, Thompson CB . Expression of bcl-xL can confer a multidrug resistance phenotype. Blood 1995; 86: 1903–1910.

    CAS  PubMed  Google Scholar 

  107. Amarante-Mendes GP, McGahon AJ, Nishioka WK, Afar DE, Witte ON, Green DR . Bcl-2-independent Bcr-Abl-mediated resistance to apoptosis: protection is correlated with up regulation of Bcl-xL. Oncogene 1998; 16: 1383–1390.

    CAS  PubMed  Google Scholar 

  108. Lebedeva I, Rando R, Ojwang J, Cossum P, Stein CA . Bcl-xL in prostate cancer cells: effects of overexpression and down-regulation on chemosensitivity. Cancer Res 2000; 60: 6052–6060.

    CAS  PubMed  Google Scholar 

  109. Lebedeva I, Raffo A, Rando R, Ojwang J, Cossum P, Stein CA . Chemosensitization of bladder carcinoma cells by bcl-xL antisense oligonucleotides. J Urol 2001; 166: 461–469.

    CAS  PubMed  Google Scholar 

  110. Nita ME, Ono-Nita SK, Tsuno N, Tominaga O, Takenoue T, Sunami E et al. Bcl-X(L) antisense sensitizes human colon cancer cell line to 5-fluorouracil. Jpn J Cancer Res 2000; 91: 825–832.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Takehara T, Liu X, Fujimoto J, Friedman SL, Takahashi H . Expression and role of Bcl-xL in human hepatocellular carcinomas. Hepatology 2001; 34: 55–61.

    CAS  PubMed  Google Scholar 

  112. Kondo S, Shinomura Y, Kanayama S, Higashimoto Y, Kiyohara T, Zushi S et al. Modulation of apoptosis by endogenous Bcl-xL expression in MKN-45 human gastric cancer cells. Oncogene 1998; 17: 2585–2591.

    CAS  PubMed  Google Scholar 

  113. Hinz S, Trauzold A, Boenicke L, Sandberg C, Beckmann S, Bayer E et al. Bcl-XL protects pancreatic adenocarcinoma cells against CD95- and TRAIL-receptor-mediated apoptosis. Oncogene 2000; 19: 5477–5486.

    CAS  PubMed  Google Scholar 

  114. Simoes-Wust AP, Olie RA, Gautschi O, Leech SH, Haner R, Hall J et al. Bcl-xl antisense treatment induces apoptosis in breast carcinoma cells. Int J Cancer 2000; 87: 582–590.

    CAS  PubMed  Google Scholar 

  115. Taylor JK, Zhang QQ, Wyatt JR, Dean NM . Induction of endogenous Bcl-xS through the control of Bcl-x pre-mRNA splicing by antisense oligonucleotides. Nat Biotechnol 1999; 17: 1097–1100.

    CAS  PubMed  Google Scholar 

  116. Miyake H, Monia BP, Gleave ME . Inhibition of progression to androgen-independence by combined adjuvant treatment with antisense BCL-XL and antisense Bcl-2 oligonucleotides plus taxol after castration in the Shionogi tumor model. Int J Cancer 2000; 86: 855–862.

    CAS  PubMed  Google Scholar 

  117. Olie RA, Hafner C, Kuttel R, Sigrist B, Willers J, Dummer R et al. Bcl-2 and bcl-xL antisense oligonucleotides induce apoptosis in melanoma cells of different clinical stages. J Invest Dermatol 2002; 118: 505–512.

    CAS  PubMed  Google Scholar 

  118. Zangemeister-Wittke U, Leech SH, Olie RA, Simoes-Wust AP, Gautschi O, Luedke GH et al. A novel bispecific antisense oligonucleotide inhibiting both bcl-2 and bcl-xL expression efficiently induces apoptosis in tumor cells. Clin Cancer Res 2000; 6: 2547–2555.

    CAS  PubMed  Google Scholar 

  119. Olie RA, Hall J, Natt F, Stahel RA, Zangemeister-Wittke U . Analysis of ribosyl-modified, mixed backbone analogs of a bcl-2/bcl-xL antisense oligonucleotide. Biochim Biophys Acta 2002; 1576: 101–109.

    CAS  PubMed  Google Scholar 

  120. Strasberg Rieber M, Zangemeister-Wittke U, Rieber M . p53-independent induction of apoptosis in human melanoma cells by a bcl-2/bcl-xL bispecific antisense oligonucleotide. Clin Cancer Res 2001; 7: 1446–1451.

    CAS  PubMed  Google Scholar 

  121. Gautschi O, Tschopp S, Olie RA, Leech SH, Simoes-Wust AP, Ziegler A et al. Activity of a novel bcl-2/bcl-xL-bispecific antisense oligonucleotide against tumors of diverse histologic origins. J Natl Cancer Inst 2001; 93: 463–471.

    CAS  PubMed  Google Scholar 

  122. Derenne S, Monia B, Dean NM, Taylor JK, Rapp MJ, Harousseau JL et al. Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-x(L) is an essential survival protein of human myeloma cells. Blood 2002; 100: 194–199.

    CAS  PubMed  Google Scholar 

  123. Petros AM, Medek A, Nettesheim DG, Kim DH, Yoon HS, Swift K et al. Solution structure of the antiapoptotic protein bcl-2. Proc Natl Acad Sci USA 2001; 98: 3012–3017.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS et al. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 1996; 381: 335–341.

    CAS  PubMed  Google Scholar 

  125. Suzuki M, Youle RJ, Tjandra N . Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 2000; 103: 645–654.

    CAS  PubMed  Google Scholar 

  126. Parker MW, Pattus F . Rendering a membrane protein soluble in water: a common packing motif in bacterial protein toxins. Trends Biochem Sci 1993; 18: 391–395.

    CAS  PubMed  Google Scholar 

  127. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD . The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 1997; 275: 1132–1136.

    CAS  PubMed  Google Scholar 

  128. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 1997; 275: 1129–1132.

    CAS  PubMed  Google Scholar 

  129. Schendel SL, Xie Z, Montal MO, Matsuyama S, Montal M, Reed JC . Channel formation by antiapoptotic protein Bcl-2. Proc Natl Acad Sci USA 1997; 94: 5113–5118.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Schlesinger PH, Gross A, Yin XM, Yamamoto K, Saito M, Waksman G et al. Comparison of the ion channel characteristics of proapoptotic BAX and antiapoptotic BCL-2. Proc Natl Acad Sci USA 1997; 94: 11357–11362.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Minn AJ, Velez P, Schendel SL, Liang H, Muchmore SW, Fesik SW et al. Bcl-x(L) forms an ion channel in synthetic lipid membranes. Nature 1997; 385: 353–357.

    CAS  PubMed  Google Scholar 

  132. Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I et al. Inhibition of Bax channel-forming activity by Bcl-2. Science 1997; 277: 370–372.

    CAS  PubMed  Google Scholar 

  133. Eskes R, Desagher S, Antonsson B, Martinou JC . Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 2000; 20: 929–935.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Saito M, Korsmeyer SJ, Schlesinger PH . BAX-dependent transport of cytochrome c reconstituted in pure liposomes. Nat Cell Biol 2000; 2: 553–555.

    CAS  PubMed  Google Scholar 

  135. Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R et al. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 2002; 111: 331–342.

    CAS  PubMed  Google Scholar 

  136. Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ . Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 1995; 80: 285–291.

    CAS  PubMed  Google Scholar 

  137. Adams JM, Cory S . The Bcl-2 protein family: arbiters of cell survival. Science 1998; 281: 1322–1326.

    CAS  PubMed  Google Scholar 

  138. Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T et al. BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 2001; 8: 705–711.

    CAS  PubMed  Google Scholar 

  139. Hanada M, Aime-Sempe C, Sato T, Reed JC . Structure–function analysis of Bcl-2 protein. Identification of conserved domains important for homodimerization with Bcl-2 and heterodimerization with Bax. J Biol Chem 1995; 270: 11962–11969.

    CAS  PubMed  Google Scholar 

  140. Hunter JJ, Bond BL, Parslow TG . Functional dissection of the human Bc12 protein: sequence requirements for inhibition of apoptosis. Mol Cell Biol 1996; 16: 877–883.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Hirotani M, Zhang Y, Fujita N, Naito M, Tsuruo T . NH2-terminal BH4 domain of Bcl-2 is functional for heterodimerization with Bax and inhibition of apoptosis. J Biol Chem 1999; 274: 20415–20420.

    CAS  PubMed  Google Scholar 

  142. Yin XM, Oltvai ZN, Korsmeyer SJ . BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 1994; 369: 321–323.

    CAS  PubMed  Google Scholar 

  143. Chittenden T, Flemington C, Houghton AB, Ebb RG, Gallo GJ, Elangovan B et al. A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions. EMBO J 1995; 14: 5589–5596.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Hunter JJ, Parslow TG . A peptide sequence from Bax that converts Bcl-2 into an activator of apoptosis. J Biol Chem 1996; 271: 8521–8524.

    CAS  PubMed  Google Scholar 

  145. Zha H, Aime-Sempe C, Sato T, Reed JC . Proapoptotic protein Bax heterodimerizes with Bcl-2 and homodimerizes with Bax via a novel domain (BH3) distinct from BH1 and BH2. J Biol Chem 1996; 271: 7440–7444.

    CAS  PubMed  Google Scholar 

  146. Diaz JL, Oltersdorf T, Horne W, McConnell M, Wilson G, Weeks S et al. A common binding site mediates heterodimerization and homodimerization of Bcl-2 family members. J Biol Chem 1997; 272: 11350–11355.

    CAS  PubMed  Google Scholar 

  147. Simonen M, Keller H, Heim J . The BH3 domain of Bax is sufficient for interaction of Bax with itself and with other family members and it is required for induction of apoptosis. Eur J Biochem 1997; 249: 85–91.

    CAS  PubMed  Google Scholar 

  148. Ottilie S, Diaz JL, Horne W, Chang J, Wang Y, Wilson G et al. Dimerization properties of human BAD. Identification of a BH-3 domain and analysis of its binding to mutant BCL-2 and BCL-XL proteins. J Biol Chem 1997; 272: 30866–30872.

    CAS  PubMed  Google Scholar 

  149. Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE, Eberstadt M et al. Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 1997; 275: 983–986.

    CAS  PubMed  Google Scholar 

  150. Petros AM, Nettesheim DG, Wang Y, Olejniczak ET, Meadows RP, Mack J et al. Rationale for Bcl-xL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies. Protein Sci 2000; 9: 2528–2534.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Shangary S, Johnson DE . Peptides derived from BH3 domains of Bcl-2 family members: a comparative analysis of inhibition of Bcl-2, Bcl-x(L) and Bax oligomerization, induction of cytochrome c release, and activation of cell death. Biochemistry 2002; 41: 9485–9495.

    CAS  PubMed  Google Scholar 

  152. Cosulich SC, Worrall V, Hedge PJ, Green S, Clarke PR . Regulation of apoptosis by BH3 domains in a cell-free system. Curr Biol 1997; 7: 913–920.

    CAS  PubMed  Google Scholar 

  153. Liu X, Kim CN, Yang J, Jemmerson R, Wang X . Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996; 86: 147–157.

    CAS  PubMed  Google Scholar 

  154. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X . Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997; 90: 405–413.

    CAS  PubMed  Google Scholar 

  155. Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC . Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA 1998; 95: 4997–5002.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Narita M, Shimizu S, Ito T, Chittenden T, Lutz RJ, Matsuda H et al. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci USA 1998; 95: 14681–14686.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Polster BM, Kinnally KW, Fiskum G . BH3 death domain peptide induces cell type-selective mitochondrial outer membrane permeability. J Biol Chem 2001; 276: 37887–37894.

    CAS  PubMed  Google Scholar 

  158. Derossi D, Joliot AH, Chassaing G, Prochiantz A . The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 1994; 269: 10444–10450.

    CAS  PubMed  Google Scholar 

  159. Frankel AD, Pabo CO . Cellular uptake of the tat protein from human immunodeficiency virus. Cell 1988; 55: 1189–1193.

    CAS  PubMed  Google Scholar 

  160. Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF . In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 1999; 285: 1569–1572.

    CAS  PubMed  Google Scholar 

  161. Elliott G, O'Hare P . Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 1997; 88: 223–233.

    CAS  PubMed  Google Scholar 

  162. Phelan A, Elliott G, O'Hare P . Intercellular delivery of functional p53 by the herpesvirus protein VP22. Nat Biotechnol 1998; 16: 440–443.

    CAS  PubMed  Google Scholar 

  163. Wang JL, Zhang ZJ, Choksi S, Shan S, Lu Z, Croce CM et al. Cell permeable Bcl-2 binding peptides: a chemical approach to apoptosis induction in tumor cells. Cancer Res 2000; 60: 1498–1502.

    CAS  PubMed  Google Scholar 

  164. Finnegan NM, Curtin JF, Prevost G, Morgan B, Cotter TG . Induction of apoptosis in prostate carcinoma cells by BH3 peptides which inhibit Bak/Bcl-2 interactions. Br J Cancer 2001; 85: 115–121.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Holinger EP, Chittenden T, Lutz RJ . Bak BH3 peptides antagonize Bcl-xL function and induce apoptosis through cytochrome c-independent activation of caspases. J Biol Chem 1999; 274: 13298–133304.

    CAS  PubMed  Google Scholar 

  166. Kelekar A, Chang BS, Harlan JE, Fesik SW, Thompson CB . Bad is a BH3 domain-containing protein that forms an inactivating dimer with Bcl-XL. Mol Cell Biol 1997; 17: 7040–7046.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ . Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002; 2: 183–192.

    CAS  PubMed  Google Scholar 

  168. Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 1999; 5: 1032–1038.

    CAS  PubMed  Google Scholar 

  169. Schimmer AD, Hedley DW, Chow S, Pham NA, Chakrabartty A, Bouchard D et al. The BH3 domain of BAD fused to the Antennapedia peptide induces apoptosis via its alpha helical structure and independent of Bcl-2. Cell Death Differ 2001; 8: 725–733.

    CAS  PubMed  Google Scholar 

  170. Nakashima T, Miura M, Hara M . Tetrocarcin A inhibits mitochondrial functions of Bcl-2 and suppresses its anti-apoptotic activity. Cancer Res 2000; 60: 1229–1235.

    CAS  PubMed  Google Scholar 

  171. Tomita F, Tamaoki T . Tetrocarcins, novel antitumor antibiotics. I. Producing organism, fermentation and antimicrobial activity. J Antibiot (Tokyo) 1980; 33: 940–945.

    CAS  Google Scholar 

  172. Tamaoki T, Kasai M, Shirahata K, Ohkubo S, Morimoto M, Mineura K et al. Tetrocarcins, novel antitumor antibiotics. II. Isolation, characterization and antitumor activity. J Antibiot (Tokyo) 1980; 33: 946–950.

    CAS  Google Scholar 

  173. Morimoto M, Fukui M, Ohkubo S, Tamaoki T, Tomita F . Tetrocarcins, new antitumor antibiotics. 3. Antitumor activity of tetrocarcin A. J Antibiot (Tokyo) 1982; 35: 1033–1037.

    CAS  Google Scholar 

  174. Kaneko M, Nakashima T, Uosaki Y, Hara M, Ikeda S, Kanda Y . Synthesis of tetrocarcin derivatives with specific inhibitory activity towards Bcl-2 functions. Bioorg Med Chem Lett 2001; 11: 887–890.

    CAS  PubMed  Google Scholar 

  175. Tinhofer I, Anether G, Senfter M, Pfaller K, Bernhard D, Hara M et al. Stressful death of T-ALL tumor cells after treatment with the anti-tumor agent Tetrocarcin-A. FASEB J 2002; 16: 1295–1297.

    CAS  PubMed  Google Scholar 

  176. Tzung SP, Kim KM, Basanez G, Giedt CD, Simon J, Zimmerberg J et al. Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nat Cell Biol 2001; 3: 183–191.

    CAS  PubMed  Google Scholar 

  177. Kim KM, Giedt CD, Basanez G, O'Neill JW, Hill JJ, Han YH et al. Biophysical characterization of recombinant human Bcl-2 and its interactions with an inhibitory ligand, antimycin A. Biochemistry 2001; 40: 4911–4922.

    CAS  PubMed  Google Scholar 

  178. Wang JL, Liu D, Zhang ZJ, Shan S, Han X, Srinivasula SM et al. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci USA 2000; 97: 7124–7129.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Milella M, Estrov Z, Kornblau SM, Carter BZ, Konopleva M, Tari A et al. Synergistic induction of apoptosis by simultaneous disruption of the Bcl-2 and MEK/MAPK pathways in acute myelogenous leukemia. Blood 2002; 99: 3461–3464.

    CAS  PubMed  Google Scholar 

  180. Degterev A, Lugovskoy A, Cardone M, Mulley B, Wagner G, Mitchison T et al. Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. Nat Cell Biol 2001; 3: 173–182.

    CAS  PubMed  Google Scholar 

  181. Lugovskoy AA, Degterev AI, Fahmy AF, Zhou P, Gross JD, Yuan J et al. A novel approach for characterizing protein ligand complexes: molecular basis for specificity of small-molecule Bcl-2 inhibitors. J Am Chem Soc 2002; 124: 1234–1240.

    CAS  PubMed  Google Scholar 

  182. Enyedy IJ, Ling Y, Nacro K, Tomita Y, Wu X, Cao Y et al. Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening. J Med Chem 2001; 44: 4313–4324.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shangary, S., Johnson, D. Recent advances in the development of anticancer agents targeting cell death inhibitors in the Bcl-2 protein family. Leukemia 17, 1470–1481 (2003). https://doi.org/10.1038/sj.leu.2403029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403029

Keywords

This article is cited by

Search

Quick links