Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Homeobox gene expression profile in human hematopoietic multipotent stem cells and T-cell progenitors: implications for human T-cell development

Abstract

Class I homeobox (HOX) genes comprise a large family of transcription factors that have been implicated in normal and malignant hematopoiesis. However, data on their expression or function during T-cell development is limited. Using degenerated RT-PCR and Affymetrix microarray analysis, we analyzed the expression pattern of this gene family in human multipotent stem cells from fetal liver (FL) and adult bone marrow (ABM), and in T-cell progenitors from child thymus. We show that FL and ABM stem cells are similar in terms of HOX gene expression, but significant differences were observed between these two cell types and child thymocytes. As the most immature thymocytes are derived from immigrated FL and ABM stem cells, this indicates a drastic change in HOX gene expression upon entry into the thymus. Further analysis of HOX-A7, HOX-A9, HOX-A10, and HOX-A11 expression with specific RT-PCR in all thymocyte differentiation stages showed a sequential loss of 3′ region HOX-A cluster genes during intrathymic T-cell development and an unexpected expression of HOX-A11, previously not recognized to play a role in hematopoiesis. Also HOX-B3 and HOX-C4 were expressed throughout thymocyte development. Overall, these data provide novel evidence for an important role of certain HOX genes in human T-cell development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Kornberg TB . Understanding the homeodomain. J Biol Chem 1993; 268: 26813–26816.

    CAS  PubMed  Google Scholar 

  2. Lawrence PA, Morata G . Homeobox genes: their function in Drosophila segmentation and pattern formation. Cell 1994; 78: 181–189.

    Article  CAS  PubMed  Google Scholar 

  3. Krumlauf R . Hox genes in vertebrate development. Cell 1994; 78: 191–201.

    Article  CAS  PubMed  Google Scholar 

  4. Taghon T, Stolz F, De Smedt M, Cnockaert M, Verhasselt B, Plum J et al. HOX-A10 regulates hematopoietic lineage commitment: evidence for a monocyte-specific transcription factor. Blood 2002; 99: 1197–1204.

    Article  CAS  PubMed  Google Scholar 

  5. Magli MC, Largman C, Lawrence HJ . Effects of HOX homeobox genes in blood cell differentiation. J Cell Physiol 1997; 173: 168–177.

    Article  CAS  PubMed  Google Scholar 

  6. Lawrence HJ, Sauvageau G, Humphries RK, Largman C . The role of HOX homeobox genes in normal and leukemic hematopoiesis. Stem Cells 1996; 14: 281–291.

    Article  CAS  PubMed  Google Scholar 

  7. Sato Y, Abe S, Mise K, Sasaki M, Kamada N, Kouda K et al. Reciprocal translocation involving the short arms of chromosomes 7 and 11, t(7p−;11p+), associated with myeloid leukemia with maturation. Blood 1987; 70: 1654–1658.

    CAS  PubMed  Google Scholar 

  8. Borrow J, Shearman AM, Stanton VP, Becher R, Collins T, Williams AJ et al. The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9. Nat Genet 1996; 12: 159–167.

    Article  CAS  PubMed  Google Scholar 

  9. Fujino T, Suzuki A, Ito Y, Ohyashiki K, Hatano Y, Miura I et al. Single-translocation and double-chimeric transcripts: detection of NUP98-HOXA9 in myeloid leukemias with HOXA11 or HOXA13 breaks of the chromosomal translocation t(7;11)(p15;p15). Blood 2002; 99:1428–1433.

    Article  CAS  PubMed  Google Scholar 

  10. Dash A, Gilliland DG . Molecular genetics of acute myeloid leukaemia. Best Pract Res Clin Haematol 2001; 14: 49–64.

    Article  CAS  PubMed  Google Scholar 

  11. Kawagoe H, Humphries RK, Blair A, Sutherland HJ, Hogge DE . Expression of HOX genes, HOX cofactors, and MLL in phenotypically and functionally defined subpopulations of leukemic and normal human hematopoietic cells. Leukemia 1999; 13: 687–698.

    Article  CAS  PubMed  Google Scholar 

  12. Lawrence HJ, Sauvageau G, Ahmadi N, Lopez AR, LeBeau MM, Link M et al. Stage- and lineage-specific expression of the HOXA10 homeobox gene in normal and leukemic hematopoietic cells. Exp Hematol 1995; 23: 1160–1166.

    CAS  PubMed  Google Scholar 

  13. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999; 286: 531–537.

    Article  CAS  PubMed  Google Scholar 

  14. Giampaolo A, Felli N, Diverio D, Morsilli O, Samoggia P, Breccia M, Lo CF, Peschle C, Testa U . Expression pattern of HOXB6 homeobox gene in myelomonocytic differentiation and acute myeloid leukemia. Leukemia 2002; 16: 1293–1301.

    Article  CAS  PubMed  Google Scholar 

  15. Bijl JJ, van Oostveen JW, Walboomers JM, Horstman A, van den Brule AJ, Willemze R et al. HOXC4, HOXC5, and HOXC6 expression in non-Hodgkin's lymphoma: preferential expression of the HOXC5 gene in primary cutaneous anaplastic T-cell and oro-gastrointestinal tract mucosa-associated B-cell lymphomas. Blood 1997; 90: 4116–4125.

    CAS  PubMed  Google Scholar 

  16. Res P, Spits H . Developmental stages in the human thymus. Semin Immunol 1999; 11: 39–46.

    Article  CAS  PubMed  Google Scholar 

  17. Ting CN, Olson MC, Barton KP, Leiden JM . Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 1996; 384: 474–478.

    Article  CAS  PubMed  Google Scholar 

  18. Oosterwegel M, van de Wetering M, Dooijes D, Klomp L, Winoto A, Georgopoulos K et al. Cloning of murine TCF-1, a T cell-specific transcription factor interacting with functional motifs in the CD3-epsilon and T cell receptor alpha enhancers. J Exp Med 1991; 173: 1133–1142.

    Article  CAS  PubMed  Google Scholar 

  19. Tomita K, Hattori M, Nakamura E, Nakanishi S, Minato N, Kageyama R . The bHLH gene Hes1 is essential for expansion of early T cell precursors. Genes Dev 1999; 13: 1203–1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schilham MW, Moerer P, Cumano A, Clevers HC . Sox-4 facilitates thymocyte differentiation. Eur J Immunol 1997; 27: 1292–1295.

    Article  CAS  PubMed  Google Scholar 

  21. Spain LM, Guerriero A, Kunjibettu S, Scott EW . T cell development in PU.1-deficient mice. J Immunol 1999; 163: 2681–2687.

    CAS  PubMed  Google Scholar 

  22. Rothenberg EV, Anderson MK . Elements of transcription factor network design for T-lineage specification. Dev Biol 2002; 246: 29–44.

    Article  CAS  PubMed  Google Scholar 

  23. Lawrence HJ, Helgason CD, Sauvageau G, Fong S, Izon DJ, Humphries RK et al. Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. Blood 1997; 89: 1922–1930.

    CAS  PubMed  Google Scholar 

  24. Izon DJ, Rozenfeld S, Fong ST, Komuves L, Largman C, Lawrence HJ . Loss of function of the homeobox gene Hoxa-9 perturbs early T-cell development and induces apoptosis in primitive thymocytes. Blood 1998; 92: 383–393.

    CAS  PubMed  Google Scholar 

  25. Sauvageau G, Thorsteinsdottir U, Hough MR, Hugo P, Lawrence HJ, Largman C et al. Overexpression of HOXB3 in hematopoietic cells causes defective lymphoid development and progressive myeloproliferation. Immunity 1997; 6: 13–22.

    Article  CAS  PubMed  Google Scholar 

  26. Plum J, De Smedt M, Defresne MP, Leclercq G, Vandekerckhove B . Human CD34+ fetal liver stem cells differentiate to T cells in a mouse thymic microenvironment. Blood 1994; 84: 1587–1593.

    CAS  PubMed  Google Scholar 

  27. Robin C, Bennaceur-Griscelli A, Louache F, Vainchenker W, Coulombel L . Identification of human T-lymphoid progenitor cells in CD34+ CD38 low and CD34+ CD38+ subsets of human cord blood and bone marrow cells using NOD-SCID fetal thymus organ cultures. Br J Haematol 1999; 104: 809–819.

    Article  CAS  PubMed  Google Scholar 

  28. Galy AH, Cen D, Travis M, Chen S, Chen BP . Delineation of T-progenitor cell activity within the CD34+ compartment of adult bone marrow. Blood 1995; 85: 2770–2778.

    CAS  PubMed  Google Scholar 

  29. Spits H, Blom B, Jaleco AC, Weijer K, Verschuren MC, van Dongen JJ et al. Early stages in the development of human T, natural killer and thymic dendritic cells. Immunol Rev 1998; 165: 75–86.

    Article  CAS  PubMed  Google Scholar 

  30. Vanhecke D, Verhasselt B, De Smedt M, Leclercq G, Plum J, Vandekerckhove B . Human thymocytes become lineage committed at an early postselection CD69+ stage, before the onset of functional maturation. J Immunol 1997; 159: 5973–5983.

    CAS  PubMed  Google Scholar 

  31. Sauvageau G, Lansdorp PM, Eaves CJ, Hogge DE, Dragowska WH, Reid DS et al. Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc Natl Acad Sci USA 1994; 91: 12223–12227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA . ‘Stemness’: transcriptional profiling of embryonic and adult stem cells. Science 2002; 298: 597–600.

    Article  CAS  PubMed  Google Scholar 

  33. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR . A stem cell molecular signature. Science 2002; 298: 601–604.

    Article  CAS  PubMed  Google Scholar 

  34. Sauvageau G, Thorsteinsdottir U, Eaves CJ, Lawrence HJ, Largman C, Lansdorp PM et al. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev 1995; 9: 1753–1765.

    Article  CAS  PubMed  Google Scholar 

  35. Antonchuk J, Sauvageau G, Humphries RK . HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 2002; 109: 39–45.

    Article  CAS  PubMed  Google Scholar 

  36. Peault B, Weissman IL, Baum C, McCune JM, Tsukamoto A . Lymphoid reconstitution of the human fetal thymus in SCID mice with CD34+ precursor cells. J Exp Med 1991; 174: 1283–1286.

    Article  CAS  PubMed  Google Scholar 

  37. Miller JS, McCullar V, Punzel M, Lemischka IR, Moore KA . Single adult human CD34(+)/Lin−/CD38(−) progenitors give rise to natural killer cells, B-lineage cells, dendritic cells, and myeloid cells. Blood 1999; 93: 96–106.

    CAS  PubMed  Google Scholar 

  38. Thorsteinsdottir U, Mamo A, Kroon E, Jerome L, Bijl J, Lawrence HJ et al. Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood 2002; 99: 121–129.

    Article  CAS  PubMed  Google Scholar 

  39. Res P, Martinez-Caceres E, Cristina JA, Staal F, Noteboom E, Weijer K et al. CD34+CD38dim cells in the human thymus can differentiate into T, natural killer, and dendritic cells but are distinct from pluripotent stem cells. Blood 1996; 87: 5196–5206.

    CAS  PubMed  Google Scholar 

  40. Kerre TC, De Smet G, De Smedt M, Offner F, De Bosscher J, Plum J et al. Both CD34+38+ and CD34+38− cells home specifically to the bone marrow of NOD/LtSZ scid/scid mice but show different kinetics in expansion. J Immunol 2001; 167: 3692–3698.

    Article  CAS  PubMed  Google Scholar 

  41. Plum J, De Smedt M, Leclercq G, Verhasselt B, Vandekerckhove B . Interleukin-7 is a critical growth factor in early human T-cell development. Blood 1996; 88: 4239–4245.

    CAS  PubMed  Google Scholar 

  42. Bijl J, van Oostveen JW, Kreike M, Rieger E, van der Raaij-Helmer LM, Walboomers JM et al. Expression of HOXC4, HOXC5, and HOXC6 in human lymphoid cell lines, leukemias, and benign and malignant lymphoid tissue. Blood 1996; 87: 1737–1745.

    CAS  PubMed  Google Scholar 

  43. Daga A, Podesta M, Capra MC, Piaggio G, Frassoni F, Corte G . The retroviral transduction of HOXC4 into human CD34(+) cells induces an in vitro expansion of clonogenic and early progenitors. Exp Hematol 2000; 28: 569–574.

    Article  CAS  PubMed  Google Scholar 

  44. Duboule D, Morata G . Colinearity and functional hierarchy among genes of the homeotic complexes. Trends Genet 1994; 10: 358–364.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Christine Brunaud, Mario Vaneechoutte, Chris Verhofstede and Thierry De Baere for their excellent scientific advice, and Ilse Swennen, Leentje Van Simaey, Nancy De Cabooter and José De Bosscher for their technical assistance. This work was supported by grants from Ghent University, Belgium; the Flanders Institute for Biotechnology (VIB), Belgium; and the Fund for Scientific Research Flanders (FWO-Vlaanderen), Belgium.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taghon, T., Thys, K., De Smedt, M. et al. Homeobox gene expression profile in human hematopoietic multipotent stem cells and T-cell progenitors: implications for human T-cell development. Leukemia 17, 1157–1163 (2003). https://doi.org/10.1038/sj.leu.2402947

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402947

Keywords

This article is cited by

Search

Quick links