Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Functional characterization of human CD34+ cells that express low or high levels of the membrane antigen CD111 (nectin 1)

Abstract

Nectins are recently described adhesion molecules that are widely expressed on many tissues, including the hematopoietic tissue. Nectin 1 (CD111) is expressed on a higher proportion of mobilized peripheral blood (mPB) than cord blood (CB) CD34+ cells, and of CD34+/CD38+ cells when compared with CD34+/CD38 cells. We studied functional properties of human CB and mPB CD34+ cells that express low or high levels of CD111. CD34+/CD111dim cells contain a higher proportion of cells in G0/G1 phase than CD34+/CD111bright cells. CD34+/CD111bright cells contain more erythroid progenitors: CFU-E, than their counterparts, which on the opposite contain more HPP-CFC. Limiting dilution analyses demonstrate a higher frequency of immature progenitors: cobblestone-area colony-forming cells, in CD34+/CD111dim than in CD34+/CD111bright cells. In vitro differentiation assays demonstrate a higher frequency of B-, T- and dendritic-cell precursors, but less NK-cell precursors in CD34+/CD111dim cells. Evaluation of engraftment in NOD-SCID mice shows that SCID repopulating cells are more frequent among mPB CD34+/CD111dim cells. Liquid culture of CD34+/CD111dim cells with erythropoietin shows that CD111 expression increases simultaneously with CD36, following CD71 and before glycophorin A expression. In conclusion, immature human hematopoietic progenitors express low levels of CD111 on their surface. During erythroid differentiation CD34+ cells acquire higher levels of the CD111 antigen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Civin CL, Strauss LC, Brovall C, Fackler MJ, Schwartz JF, Shaper JH . Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol 1984; 133: 157–165.

    CAS  PubMed  Google Scholar 

  2. Terstappen LWMM, Huang S, Safford M, Lansdorp PM, Loken MR . Sequential generations of hematopoietic colonies derived from single non lineage committed CD34+CD38−progenitor cells. Blood 1991; 77: 1218–1227.

    CAS  PubMed  Google Scholar 

  3. Muench MO, Cupp J, Polakoff J, Roncarolo MG . Expression of CD33, CD38, and HLA-DR on CD34+ human fetal liver progenitors with high proliferative potential. Blood 1994; 83: 3170–3181.

    CAS  PubMed  Google Scholar 

  4. Reems JA, Torok-Storb B . Cell cycle and functional differences between CD34+/CD38lo and CD34+/CD38hi human marrow cells after in vitro cytokine exposure. Blood 1995; 85: 1480–1487.

    CAS  PubMed  Google Scholar 

  5. Baum CM, Weissman IL, Tsukamoto AS, Buckle AM, Péault B . Isolation of a candidate human hematopoietic stem cell population. Proc Natl Acad Sci USA 1992; 89: 2804–2808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Humeau L, Bardin F, Maroc C, Alario T, Galindo R, Mannoni P et al. Phenotypic, molecular and functional characterization of human peripheral blood CD34+/Thy1+ Cells. Blood 1996; 87: 949–955.

    CAS  PubMed  Google Scholar 

  7. Murray L, Chen B, Galy A, Chen S, Tushinski R, Uchida N et al. Enrichment of human hematopoietic stem cell activity in the CD34+Thy1+Lin- subpopulation from human mobilized peripheral blood. Blood 1995; 85: 368–378.

    CAS  PubMed  Google Scholar 

  8. Mohle R, Murea S, Kirsch M, Haas R . Differential expression of L-selectin, VLA-4, and LFA-1 on CD34+ progenitor cells from bone marrow and peripheral blood during G-CSF-enhanced recovery. Exp Hematol 1995; 23: 1535–1542.

    CAS  PubMed  Google Scholar 

  9. Craddock CF, Nakamoto B, Andrews RG, Priestley GV, Papayannopoulou T . Antibodies to VLA4 integrin mobilize long-term repopulating cells and augment cytokine-induced mobilization in primates and mice. Blood 1997; 90: 4779–4788.

    CAS  PubMed  Google Scholar 

  10. Zanjani ED, Flake AW, Almeida-Porada G, Tran N, Papayannopoulou T . Homing of human cells in the fetal sheep model: modulation by antibodies activating or inhibiting very late activation antigen-4-dependent function. Blood 1999; 94: 2515–2522.

    CAS  PubMed  Google Scholar 

  11. Yong KL, Watts M, Thomas NS, Sullivan A, Ings S, Linch DC . Transmigration of CD34+ cells across specialized and nonspecialized endothelium requires prior activation by growth factors and is mediated by PECAM-1 (CD31). Blood 1998; 91: 1196–1205.

    CAS  PubMed  Google Scholar 

  12. Pruijt JF, van Kooyk Y, Figdor CG, Lindley IJ, Willemze R, Fibbe WE . Anti-LFA-1 blocking antibodies prevent mobilization of hematopoietic progenitor cells induced by interleukin-8. Blood 1998; 91: 4099–4105.

    CAS  PubMed  Google Scholar 

  13. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 1999; 283: 845–848.

    Article  CAS  PubMed  Google Scholar 

  14. Oomen SP, van Hennik PB, Antonissen C, Lichtenauer-Kaligis EG, Hofland LJ, Lamberts SW, Lowenberg B, Touw IP . Somatostatin is a selective chemoattractant for primitive (CD34(+)) hematopoietic progenitor cells. Exp Hematol 2002; 30: 116–125.

    Article  CAS  PubMed  Google Scholar 

  15. Miyake K, Medina KL, Hayashi S, Ono S, Hamaoka T, Kincade PW . Monoclonal antibodies to Pgp-1/CD44 block lympho-hemopoiesis in long-term bone marrow cultures. J Exp Med 1990; 171: 477–488.

    Article  CAS  PubMed  Google Scholar 

  16. Moll J, Khaldoyanidi S, Sleeman JP, Achtnich M, Preuss I, Ponta H et al. Two different functions for CD44 proteins in human myelopoiesis. J Clin Invest 1998; 102: 1024–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khaldoyanidi S, Sikora L, Orlovskaya I, Matrosova V, Kozlov V, Sriramarao P . Correlation between nicotine-induced inhibition of hematopoiesis and decreased CD44 expression on bone marrow stromal cells. Blood 2001; 98: 303–312.

    Article  CAS  PubMed  Google Scholar 

  18. Fackler MJ, Krause DS, Smith OM, Civin CI, May WS . Full-length but not truncated CD34 inhibits hematopoietic cell differentiation of M1 cells. Blood 1995; 85: 3040–3047.

    CAS  PubMed  Google Scholar 

  19. Bazil V, Brandt J, Tsukamoto A, Hoffman R . Apoptosis of human hematopoietic progenitor cells induced by crosslinking of surface CD43, the major sialoglycoprotein of leukocytes. Blood 1995; 86: 502–511.

    CAS  PubMed  Google Scholar 

  20. Levesque JP, Zannettino AC, Pudney M, Niutta S, Haylock DN, Snapp KR et al. PSGL-1-mediated adhesion of human hematopoietic progenitors to P- selectin results in suppression of hematopoiesis. Immunity 1999; 11: 369–378.

    Article  CAS  PubMed  Google Scholar 

  21. Wang MW, Consoli U, Lane CM, Durett A, Lauppe MJ, Champlin R, Andreeff M, Deisseroth AB . Rescue from apoptosis in early (CD34-selected) versus late (non-CD34-selected) human hematopoietic cells by very late antigen 4- and vascular cell adhesion molecule (VCAM) 1-dependent adhesion to bone marrow stromal cells. Cell Growth Differ 1998; 9: 105–112.

    CAS  PubMed  Google Scholar 

  22. Eberlé F, Dubreuil P, Mattéi MG, Devilard E, Lopez M . The human PRR2 gene, related to the human poliovirus receptor gene (PVR), is the true homolog of the murine MPH gene. Gene 1995; 159: 267–272.

    Article  PubMed  Google Scholar 

  23. Lopez M, Eberle F, Mattei MG, Gabert J, Birg F, Bardin F et al. Complementary DNA characterization and chromosomal localization of a human gene related to the poliovirus receptor-encoding gene. Gene 1995; 155: 261–265.

    Article  CAS  PubMed  Google Scholar 

  24. Lopez M, Aoubala M, Jordier F, Isnardon D, Gomez S, Dubreuil P . The human poliovirus receptor related 2 protein is a new hematopoietic/endothelial homophilic adhesion molecule. Blood 1998; 92: 4602–4611.

    CAS  PubMed  Google Scholar 

  25. Reymond N, Borg JP, Lecocq E, Adelaide J, Campadelli-Fiume G, Dubreuil P et al. Human nectin3/PRR3: a novel member of the PVR/PRR/nectin family that interacts with afadin. Gene 2000; 255: 347–355.

    Article  CAS  PubMed  Google Scholar 

  26. Reymond N, Fabre S, Lecocq E, Adelaide J, Dubreuil P, Lopez M . Nectin4/PRR4, a new afadin-associated member of the nectin family that trans-interacts with nectin1/PRR1 through V domain interaction. J Biol Chem 2001; 276: 43205–4315.

  27. Geraghty RJ, Krummenacher C, Cohen GH, Eisenberg RJ, Spear PG . Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science 1998; 280: 1618–1620.

    Article  CAS  PubMed  Google Scholar 

  28. Cocchi F, Menotti L, Mirandola P, Lopez M, Campadelli-Fiume G . The ectodomain of a novel member of the immunoglobulin subfamily related to the poliovirus receptor has the attributes of a bona fide receptor for herpes simplex virus types 1 and 2 in human cells. J Virol 1998; 72: 9992–10002.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mizoguchi A, Nakanishi H, Kimura K, Matsubara K, Ozaki-Kuroda K, Katata T et al. Nectin: an adhesion molecule involved in formation of synapses. J Cell Biol 2002; 156: 555–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Suzuki K, Hu D, Bustos T, Zlotogora J, Richieri-Costa A, Helms JA et al. Mutations of PVRL1, encoding a cell-cell adhesion molecule/herpesvirus receptor, in cleft lip/palate-ectodermal dysplasia. Nat Genet 2000; 25: 427–430.

    Article  CAS  PubMed  Google Scholar 

  31. Bouchard MJ, Dong Y, McDermott Jr BM, Lam DH, Brown KR, Shelanski M et al. Defects in nuclear and cytoskeletal morphology and mitochondrial localization in spermatozoa of mice lacking nectin-2, a component of cell-cell adherens junctions. Mol Cell Biol 2000; 20: 2865–2873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Takahashi K, Nakanishi H, Miyahara M, Mandai K, Satoh K, Satoh A et al. Nectin/PRR: an immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with Afadin, a PDZ domain-containing protein. J Cell Biol 1999; 145: 539–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Satoh-Horikawa K, Nakanishi H, Takahashi K, Miyahara M, Nishimura M, Tachibana K et al. Nectin-3, a new member of immunoglobulin-like cell adhesion molecules that shows homophilic and heterophilic cell-cell adhesion activities. J Biol Chem 2000; 275: 10291–1029.

  34. Humeau L, Chabannon C, Firpo M, Mannoni P, Bagnis C, Roncarolo MG et al. Genetically modified CD34++ CD38− Lin- fetal liver progenitors reconstitute the SCID-hu mouse and express the transgene in T, B, myeloerythroid and progenitor cells. Blood 1997; 90: 3496–3506.

    CAS  PubMed  Google Scholar 

  35. Humeau L, Namikawa R, Bardin F, Mannoni P, Roncarolo MG, Chabannon C . Ex vivo manipulations alter the reconstitution potential of mobilized human CD34+ peripheral blood progenitors. Leukemia 1999; 13: 438–452.

    Article  CAS  PubMed  Google Scholar 

  36. Aurran-Schleinitz T, Imbert AM, Humeau L, Bardin F, Charbord P, Chabannon C . Early progenitor cells from human mobilized peripheral blood express low levels of the flt3 receptor, but exhibit various biological responses to flt3-L. Br J Haematol 1999; 106: 357–367.

    Article  CAS  PubMed  Google Scholar 

  37. Breems DA, Blokland EAW, Neben S, Ploemacher RE . Frequency analysis of human primitive hæmatopoietic stem cell subsets using a cobblestone area forming cell assay. Leukemia 1994; 8: 1095–1104.

    CAS  PubMed  Google Scholar 

  38. Kawaguchi Y, Jinnai I, Nagai K, Yagasaki F, Yakata Y, Matsuo T et al. Effect of a selective Abl tyrosine kinase inhibitor, STI571, on in vitro growth of BCR-ABL-positive acute lymphoblastic leukemia cells. Leukemia 2001; 15: 590–594.

    Article  CAS  PubMed  Google Scholar 

  39. Robin C, Pflumio F, Vainchenker W, Coulombel L . Identification of lymphomyeloid primitive progenitor cells in fresh human cord blood and in the marrow of nonobese diabetic-severe combined immunodeficient (NOD-SCID) mice transplanted with human CD34(+) cord blood cells. J Exp Med 1999; 189: 1601–1610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tonnelle C, Bardin F, Maroc C, Imbert AM, Campa F, Dalloul A et al. Forced expression of the Ikaros 6 isoform in human placental blood CD34+ cells impairs their ability to differentiate towards the B lymphoid lineage. Blood 2001; 98: 2673–2680.

    Article  CAS  PubMed  Google Scholar 

  41. Berardi AC, Meffre E, Pflumio F, Katz A, Vainchenker W, Schiff C et al. Individual CD34+CD38lowCD19-CD10- progenitor cells from human cord blood generate B lymphocytes and granulocytes. Blood 1997; 89: 3554–3564.

    CAS  PubMed  Google Scholar 

  42. Rosenzwajg M, Camus S, Guigon M, Gluckman JC . The influence of interleukin (IL)-4, IL-13, and Flt3 ligand on human dendritic cell differentiation from cord blood CD34+ progenitor cells. Exp Hematol 1998; 26: 63–72.

    CAS  PubMed  Google Scholar 

  43. Larochelle A, Vormoor J, Hanenberg H, Wang JCY, Bhatia M, Lapidot T et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med 1996; 2: 1329–1337.

    Article  CAS  PubMed  Google Scholar 

  44. Hogan CJ, Shpall EJ, McNiece I, Keller G . Multilineage engraftment in NOD/LtSz-scid/scid mice from mobilized human CD34+ peripheral blood progenitor cells. Biol Blood Marrow Transplanation 1997; 3: 236–246.

    CAS  Google Scholar 

  45. Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer I, Tennent B et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 1995; 154: 180–191.

    CAS  PubMed  Google Scholar 

  46. Holyoake TL, Nicolini FE, Eaves CJ . Functional differences between transplantable human hematopoietic stem cells from fetal liver, cord blood, and adult marrow. Exp Hematol 1999; 27: 1418–1427.

    Article  CAS  PubMed  Google Scholar 

  47. Galy A, Travis M, Cen D, Chen B . Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 1995; 3: 459–473.

    Article  CAS  PubMed  Google Scholar 

  48. Plum J, De Smedt M, Verhasselt B, Offner F, Kerre T, Vanhecke D et al. In vitro intrathymic differentiation kinetics of human fetal liver CD34+CD38− progenitors reveals a phenotypically defined dendritic/T-NK precursor split. J Immunol 1999; 162: 60–68.

    CAS  PubMed  Google Scholar 

  49. Kapur R, Cooper R, Zhang L, Williams DA . Cross-talk between alpha(4) beta(1)/alpha(5) beta(1) and c-Kit results in opposing effect on growth and survival of hematopoietic cells via the activation of focal adhesion kinase, mitogen-activated protein kinase, and Akt signaling pathways. Blood 2001; 97: 1975–1981.

    Article  CAS  PubMed  Google Scholar 

  50. Papayannopoulou T, Brice M . Integrin expression profiles during erythroid differentiation. Blood 1992; 79: 1686–1694.

    CAS  PubMed  Google Scholar 

  51. Edelman P, Vinci G, Villeval JL, Vainchenker W, Henri A, Miglierina R et al. A monoclonal antibody against an erythrocyte ontogenic antigen identifies fetal and adult erythroid progenitors. Blood 1986; 67: 56–63.

    CAS  PubMed  Google Scholar 

  52. Lopez M, Jordier F, Bardin F, Coulombel L, Chabannon C, Dubreuil P . Identification of a new class of Ig superfamily antigens expressed in hemopoiesis. In: Kishimoto. (ed.). Leukocyte Typing VI. Garland Publishing, 1996, pp. 1081–1083.

    Google Scholar 

  53. Armeanu S, Buhring HJ, Reuss-Borst M, Muller CA, Klein G . E-cadherin is functionally involved in the maturation of the erythroid lineage. J Cell Biol 1995; 131: 243–249.

    Article  CAS  PubMed  Google Scholar 

  54. Fabre S, Reymond N, Cocchi F, Menotti L, Dubreuil P, Campadelli-Fiume G et al. Prominent role of the Ig-like V domain in trans-interactions of nectins. Nectin 3 and nectin 4 bind to the predicted C-C′-C″-D beta-strands of the nectin1 V domain. J Biol Chem 2002; 277: 27006–27013.

    Article  CAS  PubMed  Google Scholar 

  55. Campadelli-Fiume G, Cocchi F, Menotti L, Lopez M . The novel receptors that mediate the entry of herpes simplex viruses and animal alphaherpesviruses into cells. Rev Med Virol 2000; 10: 305–319.

    Article  CAS  PubMed  Google Scholar 

  56. Crocker PR, Morris L, Gordon S . Adhesion receptors involved in the erythroblastic island. Blood Cells 1991; 17: 83–91.

    CAS  PubMed  Google Scholar 

  57. Bernard J . The erythroblastic island: past and future. Blood Cells 1991; 17: 5–10.

    CAS  PubMed  Google Scholar 

  58. Hanspal M, Hanspal JS . The association of erythroblasts with macrophages promotes erythroid proliferation and maturation: a 30-kD heparin-binding protein is involved in this contact. Blood 1994; 84: 3494–3504.

    CAS  PubMed  Google Scholar 

  59. Sadahira Y, Yoshino T, Monobe Y . Very late activation antigen 4-vascular cell adhesion molecule 1 interaction is involved in the formation of erythroblastic islands. J Exp Med 1995; 181: 411–415.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Institut Paoli-Calmettes, and by a grant from the Comité Leucémie de la Fondation de France (# 990038) to CC. GB is the recipient of a grant from a joint research training program established by the French and Algerian governments. We thank all personnel at the Tumor Cell Collection (Biothéque) and at the Centre de Thérapie Cellulaire et Génique for access to apheresis and cord blood samples. We also thank Rémy Galindo at the Flow Cytometry Facility, and Patrick Gibier at the animal facility for their help during the conduct of these studies.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belaaloui, G., Imbert, AM., Bardin, F. et al. Functional characterization of human CD34+ cells that express low or high levels of the membrane antigen CD111 (nectin 1). Leukemia 17, 1137–1145 (2003). https://doi.org/10.1038/sj.leu.2402916

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402916

Keywords

Search

Quick links