Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

The hepatocyte growth factor/Met pathway controls proliferation and apoptosis in multiple myeloma

Abstract

The evolution of multiple myeloma (MM) depends on complex signals from the bone marrow (BM) microenvironment, supporting the proliferation and survival of malignant plasma cells. An interesting candidate signal is hepatocyte growth factor/scatter factor (HGF), since its receptor Met is expressed on MM cells, while HGF is produced by BM stromal cells and by some MM cell lines, enabling para- or autocrine interaction. To explore this hypothesis, we studied the biological effects of HGF stimulation on MM cell lines and on primary MMs. We observed that Met is expressed by the majority of MM cell lines and by approximately half of the primary plasma cell neoplasms tested. Stimulation of MM cells with HGF led to the activation of the RAS/mitogen-activated protein kinase and phosphatidylinositol 3-kinase/protein kinase B (PI3K/PKB) pathways, signaling routes that have been implicated in the regulation of cell proliferation and survival. Indeed, functional studies demonstrated that HGF has strong proliferative and anti-apoptotic effects on both MM cell lines and primary MM cells. Furthermore, by applying specific signal-transduction inhibitors, we demonstrated that MEK is required for HGF-induced proliferation, whereas activation of PI3K is required for both HGF-induced proliferation and for rescue of MM cells from apoptosis. Taken together, our data indicate that HGF is a potent myeloma growth and survival factor and suggest that the HGF/Met pathway is a potential therapeutic target in MM.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hallek M, Leif Bergsagel P, Anderson KC . Multiple myeloma: increasing evidence for a multistep transformation process. Blood 1998; 91: 3–21.

    CAS  PubMed  Google Scholar 

  2. Kuehl WM, Bergsagel PL . Multiple myeloma: evolving genetic events and host interactions. Nat Rev 2002; 2: 175–187.

    Article  CAS  Google Scholar 

  3. Sanz-Rodriguez F, Hidalgo A, Teixido J . Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin-mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood 2001; 97: 346–351.

    Article  CAS  PubMed  Google Scholar 

  4. Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS . Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 1999; 93: 1658–1667.

    CAS  PubMed  Google Scholar 

  5. Podar K, Tai YT, Lin BK, Narsimhan RP, Sattler M, Kijima T et al. Vascular endothelial growth factor-induced migration of multiple myeloma cells is associated with beta 1 integrin- and phosphatidylinositol 3-kinase-dependent PKC alpha activation. J Biol Chem 2002; 277: 7875–7881.

    Article  CAS  PubMed  Google Scholar 

  6. Lokhorst HM, Lamme T, de Smet M, Klein S, de Weger RA, van Oers R et al. Primary tumor cells of myeloma patients induce interleukin-6 secretion in long-term bone marrow cultures. Blood 1994; 84: 2269–2277.

    CAS  PubMed  Google Scholar 

  7. Ferlin M, Noraz N, Hertogh C, Brochier J, Taylor N, Klein B . Insulin-like growth factor induces the survival and proliferation of myeloma cells through an interleukin-6-independent transduction pathway. Br J Haematol 2000; 111: 626–634.

    Article  CAS  PubMed  Google Scholar 

  8. Ge NL, Rudikoff S . Insulin-like growth factor I is a dual effector of multiple myeloma cell growth. Blood 2000; 96: 2856–2861.

    CAS  PubMed  Google Scholar 

  9. Klein B, Zhang XG, Lu ZY, Bataille R . Interleukin-6 in human multiple myeloma. Blood 1995; 85: 863–872.

    CAS  PubMed  Google Scholar 

  10. Borset M, Hjorth-Hansen H, Seidel C, Sundan A, Waage A . Hepatocyte growth factor and its receptor c-met in multiple myeloma. Blood 1996; 88: 3998–4004.

    CAS  PubMed  Google Scholar 

  11. Borset M, Lien E, Espevik T, Helseth E, Waage A, Sundan A . Concomitant expression of hepatocyte growth factor/scatter factor and the receptor c-MET in human myeloma cell lines. J Biol Chem 1996; 271: 24655–24661.

    Article  CAS  PubMed  Google Scholar 

  12. Derksen PW, Keehnen RM, Evers LM, van Oers MH, Spaargaren M, Pals ST . Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma. Blood 2002; 99: 1405–1410.

    Article  CAS  PubMed  Google Scholar 

  13. van der Voort R, Taher TE, Derksen PW, Spaargaren M, van der Neut R, Pals ST . The hepatocyte growth factor/Met pathway in development, tumorigenesis, and B-cell differentiation. Adv Cancer Res 2000; 79: 39–90.

    Article  CAS  PubMed  Google Scholar 

  14. Capello D, Gaidano G, Gallicchio M, Gloghini A, Medico E, Vivenza D et al. The tyrosine kinase receptor met and its ligand HGF are co-expressed and functionally active in HHV-8 positive primary effusion lymphoma. Leukemia 2000; 14: 285–291.

    Article  CAS  PubMed  Google Scholar 

  15. Takai K, Hara J, Matsumoto K, Hosoi G, Osugi Y, Tawa A et al. Hepatocyte growth factor is constitutively produced by human bone marrow stromal cells and indirectly promotes hematopoiesis. Blood 1997; 89: 1560–1565.

    CAS  PubMed  Google Scholar 

  16. Seidel C, Borset M, Turesson I, Abildgaard N, Sundan A, Waage A . Elevated serum concentrations of hepatocyte growth factor in patients with multiple myeloma. The Nordic Myeloma Study Group. Blood 1998; 91: 806–812.

    CAS  PubMed  Google Scholar 

  17. Zhang XG, Gaillard JP, Robillard N, Lu ZY, Gu ZJ, Jourdan M et al. Reproducible obtaining of human myeloma cell lines as a model for tumor stem cell study in human multiple myeloma. Blood 1994; 83: 3654–3663.

    CAS  PubMed  Google Scholar 

  18. Kuipers J, Vaandrager JW, Weghuis DO, Pearson PL, Scheres J, Lokhorst HM et al. Fluorescence in situ hybridization analysis shows the frequent occurrence of 14q32.3 rearrangements with involvement of immunoglobulin switch regions in myeloma cell lines. Cancer Genet Cytogenet 1999; 109: 99–107.

    Article  CAS  PubMed  Google Scholar 

  19. Diehl V, Schaadt M, Kirchner H, Hellriegel KP, Gudat F, Fonatsch C et al. Long-term cultivation of plasma cell leukemia cells and autologous lymphoblasts (LCL) in vitro: a comparative study. Blut 1978; 36: 331–338.

    Article  CAS  PubMed  Google Scholar 

  20. Gazdar AF, Oie HK, Kirsch IR, Hollis GF . Establishment and characterization of a human plasma cell myeloma culture having a rearranged cellular myc proto-oncogene. Blood 1986; 67: 1542–1549.

    CAS  PubMed  Google Scholar 

  21. Katagiri S, Yonezawa T, Kuyama J, Kanayama Y, Nishida K, Abe T et al. Two distinct human myeloma cell lines originating from one patient with myeloma. Int J Cancer 1985; 36: 241–246.

    Article  CAS  PubMed  Google Scholar 

  22. van der Voort R, Taher TE, Keehnen RM, Smit L, Groenink M, Pals ST . Paracrine regulation of germinal center B cell adhesion through the c- met-hepatocyte growth factor/scatter factor pathway. J Exp Med 1997; 185: 2121–2131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Koopman G, Keehnen RM, Lindhout E, Zhou DF, de Groot C, Pals ST . Germinal center B cells rescued from apoptosis by CD40 ligation or attachment to follicular dendritic cells, but not by engagement of surface immunoglobulin or adhesion receptors, become resistant to CD95-induced apoptosis. Eur J Immunol 1997; 27: 1–7.

    Article  CAS  PubMed  Google Scholar 

  24. de Rooij J, Bos JL . Minimal Ras-binding domain of Raf1 can be used as an activation-specific probe for Ras. Oncogene 1997; 14: 623–625.

    Article  CAS  PubMed  Google Scholar 

  25. Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH . Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 1994; 84: 1415–1420.

    CAS  PubMed  Google Scholar 

  26. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91: 231–241.

    Article  CAS  PubMed  Google Scholar 

  27. Wasylyk B, Hagman J, Gutierrez-Hartmann A . Ets transcription factors: nuclear effectors of the Ras-MAP-kinase signaling pathway. Trends Biochem Sci 1998; 23: 213–216.

    Article  CAS  PubMed  Google Scholar 

  28. del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G . Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 1997; 278: 687–689.

    Article  CAS  PubMed  Google Scholar 

  29. Hideshima T, Nakamura N, Chauhan D, Anderson KC . Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 2001; 20: 5991–6000.

    Article  CAS  PubMed  Google Scholar 

  30. Seidel C, Borset M, Hjorth-Hansen H, Sundan A, Waage A . Role of hepatocyte growth factor and its receptor c-met in multiple myeloma. Med Oncol 1998; 15: 145–153.

    Article  CAS  PubMed  Google Scholar 

  31. Borset M, Hjertner O, Yaccoby S, Epstein J, Sanderson RD . Syndecan-1 is targeted to the uropods of polarized myeloma cells where it promotes adhesion and sequesters heparin-binding proteins. Blood 2000; 96: 2528–2536.

    CAS  PubMed  Google Scholar 

  32. Seidel C, Borset M, Hjertner O, Cao D, Abildgaard N, Hjorth-Hansen H et al. High levels of soluble syndecan-1 in myeloma-derived bone marrow: modulation of hepatocyte growth factor activity. Blood 2000; 96: 3139–3146.

    CAS  PubMed  Google Scholar 

  33. Schmidt L, Duh FM, Chen F, Kishida T, Glenn G, Choyke P et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 1997; 16: 68–73.

    Article  CAS  PubMed  Google Scholar 

  34. Jeffers M, Schmidt L, Nakaigawa N, Webb CP, Weirich G, Kishida T et al.. Activating mutations for the met tyrosine kinase receptor in human cancer. Proc Natl Acad Sci USA 1997; 94: 11445–11450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jeffers M, Fiscella M, Webb CP, Anver M, Koochekpour S, Vande Woude GF . The mutationally activated Met receptor mediates motility and metastasis. Proc Natl Acad Sci USA 1998; 95: 14417–14422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Michieli P, Basilico C, Pennacchietti S, Maffe A, Tamagnone L, Giordano S et al. Mutant Met-mediated transformation is ligand-dependent and can be inhibited by HGF antagonists. Oncogene 1999; 18: 5221–5231.

    Article  CAS  PubMed  Google Scholar 

  37. Lee JH, Han SU, Cho H, Jennings B, Gerrard B, Dean M et al. A novel germ line juxtamembrane Met mutation in human gastric cancer. Oncogene 2000; 19: 4947–4953.

    Article  CAS  PubMed  Google Scholar 

  38. Ponzetto C, Bardelli A, Zhen Z, Maina F, dalla Zonca P, Giordano S et al. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 1994; 77: 261–271.

    Article  CAS  PubMed  Google Scholar 

  39. Zhu H, Naujokas MA, Fixman ED, Torossian K, Park M . Tyrosine 1356 in the carboxyl-terminal tail of the HGF/SF receptor is essential for the transduction of signals for cell motility and morphogenesis. J Biol Chem 1994; 269: 29943–29948.

    CAS  PubMed  Google Scholar 

  40. Fixman ED, Naujokas MA, Rodrigues GA, Moran MF, Park M . Efficient cell transformation by the Tpr-Met oncoprotein is dependent upon tyrosine 489 in the carboxy-terminus. Oncogene 1995; 10: 237–249.

    CAS  PubMed  Google Scholar 

  41. Campbell SL, Khosravi-Far R, Rossman KL, Clark GJ, Der CJ . Increasing complexity of Ras signaling. Oncogene 1998; 17: 1395–1413.

    Article  CAS  PubMed  Google Scholar 

  42. Vojtek AB, Der CJ . Increasing complexity of the Ras signaling pathway. J Biol Chem 1998; 273: 19925–19928.

    Article  CAS  PubMed  Google Scholar 

  43. Graziani A, Gramaglia D, Cantley LC, Comoglio PM . The tyrosine-phosphorylated hepatocyte growth factor/scatter factor receptor associates with phosphatidylinositol 3-kinase. J Biol Chem 1991; 266: 22087–22090.

    CAS  PubMed  Google Scholar 

  44. Ponzetto C, Bardelli A, Maina F, Longati P, Panayotou G, Dhand R et al. A novel recognition motif for phosphatidylinositol 3-kinase binding mediates its association with the hepatocyte growth factor/scatter factor receptor. Mol Cell Biol 1993; 13: 4600–4608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. van der Voort R, Keehnen RM, Beuling EA, Spaargaren M, Pals ST . Regulation of cytokine signaling by B cell antigen receptor and CD40-controlled expression of heparan sulfate proteoglycans. J Exp Med 2000; 192: 1115–1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rahimi N, Tremblay E, Elliott B . Phosphatidylinositol 3-kinase activity is required for hepatocyte growth factor-induced mitogenic signals in epithelial cells. J Biol Chem 1996; 271: 24850–24855.

    Article  CAS  PubMed  Google Scholar 

  47. Skouteris GG, Georgakopoulos E . Hepatocyte growth factor-induced proliferation of primary hepatocytes is mediated by activation of phosphatidylinositol 3-kinase. Biochem Biophys Res Commun 1996; 218: 229–233.

    Article  CAS  PubMed  Google Scholar 

  48. Day RM, Cioce V, Breckenridge D, Castagnino P, Bottaro DP . Differential signaling by alternative HGF isoforms through c-Met: activation of both MAP kinase and PI 3-kinase pathways is insufficient for mitogenesis. Oncogene 1999; 18: 3399–3406.

    Article  CAS  PubMed  Google Scholar 

  49. Bowers DC, Fan S, Walter KA, Abounader R, Williams JA, Rosen EM et al. Scatter factor/hepatocyte growth factor protects against cytotoxic death in human glioblastoma via phosphatidylinositol 3-kinase- and AKT-dependent pathways. Cancer Res 2000; 60: 4277–4283.

    CAS  PubMed  Google Scholar 

  50. Fan S, Ma YX, Wang JA, Yuan RQ, Meng Q, Cao Y et al. The cytokine hepatocyte growth factor/scatter factor inhibits apoptosis and enhances DNA repair by a common mechanism involving signaling through phosphatidyl inositol 3′kinase. Oncogene 2000; 19: 2212–2223.

    Article  CAS  PubMed  Google Scholar 

  51. Fan S, Ma YX, Gao M, Yuan RQ, Meng Q, Goldberg ID et al. The multisubstrate adapter Gab1 regulates hepatocyte growth factor (scatter factor)-c-Met signaling for cell survival and DNA repair. Mol Cell Biol 2001; 21: 4968–4984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tu Y, Gardner A, Lichtenstein A . The phosphatidylinositol 3-kinase/AKT kinase pathway in multiple myeloma plasma cells: roles in cytokine-dependent survival and proliferative responses. Cancer Res 2000; 60: 6763–6770.

    CAS  PubMed  Google Scholar 

  53. Ogawa M, Nishiura T, Oritani K, Yoshida H, Yoshimura M, Okajima Y et al. Cytokines prevent dexamethasone-induced apoptosis via the activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways in a new multiple myeloma cell line. Cancer Res 2000; 60: 4262–4269.

    CAS  PubMed  Google Scholar 

  54. Burgering BM, Coffer PJ . Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 1995; 376: 599–602.

    Article  CAS  PubMed  Google Scholar 

  55. Stokoe D, Stephens LR, Copeland T, Gaffney PR, Reese CB, Painter GF et al. Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science 1997; 277: 567–570.

    Article  CAS  PubMed  Google Scholar 

  56. Stephens L, Anderson K, Stokoe D, Erdjument-Bromage H, Painter GF, Holmes AB et al. Protein kinase B kinases that mediate phosphatidylinositol 3,4,5- trisphosphate-dependent activation of protein kinase B. Science 1998; 279: 710–714.

    Article  CAS  PubMed  Google Scholar 

  57. Hsu JH, Shi Y, Hu L, Fisher M, Franke TF, Lichtenstein A . Role of the AKT kinase in expansion of multiple myeloma clones: effects on cytokine-dependent proliferative and survival responses. Oncogene 2002; 21: 1391–1400.

    Article  CAS  PubMed  Google Scholar 

  58. Kops GJ, de Ruiter ND, De Vries-Smits AM, Powell DR, Bos JL, Burgering BM . Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 1999; 398: 630–634.

    Article  CAS  PubMed  Google Scholar 

  59. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999; 96: 857–868.

    Article  CAS  PubMed  Google Scholar 

  60. Medema RH, Kops GJ, Bos JL, BM B . AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 2000; 6779: 782–787.

    Article  Google Scholar 

  61. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB . NF-kappaB activation by tumour necrosis factor requires the Akt serine–threonine kinase. Nature 1999; 401: 82–85.

    Article  CAS  PubMed  Google Scholar 

  62. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA . Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378: 785–789.

    Article  CAS  PubMed  Google Scholar 

  63. Gingras AC, Kennedy SG, O'Leary MA, Sonenberg N, Hay N . 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev 1998; 12: 502–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shi Y, Hsu Jh J, Hu L, Gera J, Lichtenstein A . Signal pathways involved in activation of p70S6K and phosphorylation of 4E-BP1 following exposure of multiple myeloma tumor cells to interleukin-6. J Biol Chem 2002; 277: 15712–15720.

    Article  CAS  PubMed  Google Scholar 

  65. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ . Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 1996; 87: 619–628.

    Article  CAS  PubMed  Google Scholar 

  66. Zha J, Harada H, Osipov K, Jockel J, Waksman G, Korsmeyer SJ . BH3 domain of BAD is required for heterodimerization with BCL-XL and pro-apoptotic activity. J Biol Chem 1997; 272: 24101–24104.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Thera Wormhoudt and Dr Ronald van der Neut for providing mouse embryonic fibroblasts. This work was supported by grants from the Dutch Cancer Society and the Association for International Cancer Research (AICR).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derksen, P., de Gorter, D., Meijer, H. et al. The hepatocyte growth factor/Met pathway controls proliferation and apoptosis in multiple myeloma. Leukemia 17, 764–774 (2003). https://doi.org/10.1038/sj.leu.2402875

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402875

Keywords

This article is cited by

Search

Quick links