Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Immunophenotype CD34 in AML

HLA-DR antigen-negative acute myeloid leukemia

Abstract

Human leukocyte antigen (HLA) Class II antigens are variably expressed on acute myeloid leukemia (AML) blasts. The biological and clinical significance of HLA Class II antigen expression by AML cells is not known. Therefore, we sought to characterize cases of AML without detectable HLA-DR expression. Samples from 248 consecutive adult AML patients were immunophenotyped by multiparameter flow cytometry at diagnosis. HLA-DR antigens were not detected on AML cells from 43 patients, including 20 with acute promyelocytic leukemia (APL), and 23 with other subtypes of AML. All APL cases had t(15;17), but there were no characteristic chromosome abnormalities in non-APL cases. No direct expression of other antigens was identified in HLA-DR-negative APL and non-APL cases. Interestingly, cells from three HLA-DR-negative non-APL patients had similar morphology to that of the hypogranular variant of APL. This morphology, however, was not present in any HLA-DR-positive AML cases. Treatment response was similar in the 23 HLA-DR-negative non-APL and the 205 HLA-DR-positive patients. Finally, relapse was infrequently associated with changes in HLA-DR antigen expression, as the HLA-DR antigen was lost at relapse in only 4% of HLA-DR-positive cases, and was gained at relapse in only 17% of HLA-DR-negative cases. We conclude that HLA-DR-negative AML includes approximately equal numbers of APL and non-APL cases, and that the morphology of HLA-DR-negative non-APL cases can mimic the hypogranular variant of APL. The diagnosis of APL cannot be based on morphology and lack of HLA-DR antigen expression; rather, it requires cytogenetic or molecular confirmation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Slymen DJ, Miller TP, Lippman SM, Spier CM, Kerrigan DP, Rybski JA et al. Immunobiologic factors predictive of clinical outcome in diffuse large-cell lymphoma. J Clin Oncol 1990; 8: 986–993.

    Article  CAS  PubMed  Google Scholar 

  2. Pilkington G, Juneja S, Tan L, Matthews J, Quirk J, Lee G et al. Correlation of immunological surface antigens with survival in diffuse large cell lymphoma. Hematol Oncol 1993; 11: 195–205.

    Article  CAS  PubMed  Google Scholar 

  3. Riemersma SA, Jordanova ES, Schop RF, Philippo K, Looijenga LH, Schuuring E et al. Extensive genetic alterations of the HLA region, including homozygous deletions of HLA class II genes in B-cell lymphomas arising in immune-privileged sites. Blood 2000; 96: 3569–3577.

    CAS  PubMed  Google Scholar 

  4. Norazmi M, Hohmann AW, Skinner JM, Bradley J . Expression of MHC class I and class II antigens in colonic carcinomas. Pathology 1989; 21: 248–253.

    Article  CAS  PubMed  Google Scholar 

  5. Hilders CG, Houbiers JG, van Ravenswaay Claasen HH, Veldhuizen RW, Fleuren GJ . Association between HLA-expression and infiltration of immune cells in cervical carcinoma. Lab Invest 1993; 69: 651–659.

    CAS  PubMed  Google Scholar 

  6. Coleman N, Stanley MA . Analysis of HLA-DR expression on keratinocytes in cervical neoplasia. Int J Cancer 1994; 56: 314–319.

    Article  CAS  PubMed  Google Scholar 

  7. Cromme FV, van Bommel PF, Walboomers JM, Gallee MP, Stern PL, Kenemans P et al. Differences in MHC and TAP-1 expression in cervical cancer lymph node metastases as compared with the primary tumours. Br J Cancer 1994; 69: 1176–1181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lopez-Nevot MA, Garcia E, Romero C, Oliva MR, Serrano S, Garrido F . Phenotypic and genetic analysis of HLA class I and HLA-DR antigen expression on human melanomas. Exp Clin Immunogenet 1988; 5: 203–212.

    CAS  PubMed  Google Scholar 

  9. Ruiter DJ, Mattijssen V, Broecker EB, Ferrone S . MHC antigens in human melanomas. Semin Cancer Biol 1991; 2: 35–45.

    CAS  PubMed  Google Scholar 

  10. Colloby PS, West KP, Fletcher A . Is poor prognosis really related to HLA-DR expression by malignant melanoma cells? Histopathology 1992; 20: 411–416.

    Article  CAS  PubMed  Google Scholar 

  11. Moretti S, Pinzi C, Berti E, Spallanzani A, Chiarugi A, Boddi V et al. In situ expression of transforming growth factor beta is associated with melanoma progression and correlates with Ki67, HLA-DR and beta 3 integrin expression. Melanoma Res 1997; 7: 313–321.

    Article  CAS  PubMed  Google Scholar 

  12. Konstadoulakis MM, Vezeridis M, Hatziyianni E, Karakousis CP, Cole B, Bland KI et al. Molecular oncogene markers and their significance in cutaneous malignant melanoma. Ann Surg Oncol 1998; 5: 253–260.

    Article  CAS  PubMed  Google Scholar 

  13. Ostmeier H, Fuchs B, Otto F, Mawick R, Lippold A, Krieg V et al. Can immunohistochemical markers and mitotic rate improve prognostic precision in patients with primary melanoma? Cancer 1999; 85: 2391–2399.

    Article  CAS  PubMed  Google Scholar 

  14. Hanson CA, Gajl-Peczalska KJ, Parkin JL, Brunning RD . Immunophenotyping of acute myeloid leukemia using monoclonal antibodies and the alkaline phosphatase–antialkaline phosphatase technique. Blood 1987; 70: 83–89.

    CAS  PubMed  Google Scholar 

  15. Scott CS, Patel D, Drexler HG, Master PS, Limbert HJ, Roberts BE . Immunophenotypic and enzymatic studies do not support the concept of mixed monocytic–granulocytic differentiation in acute promyelocytic leukaemia (M3): a study of 44 cases. Br J Haematol 1989; 71: 505–509.

    Article  CAS  PubMed  Google Scholar 

  16. De Rossi G, Avvisati G, Coluzzi S, Fenu S, LoCoco F, Lopez M et al. Immunological definition of acute promyelocytic leukemia (FAB M3): a study of 39 cases. Eur J Haematol 1990; 45: 168–171.

    Article  CAS  PubMed  Google Scholar 

  17. Stone RM, Mayer RJ . The unique aspects of acute promyelocytic leukemia. J Clin Oncol 1990; 8: 1913–1921.

    Article  CAS  PubMed  Google Scholar 

  18. Baer MR, Stewart CC, Dodge RK, Leget G, Sule N, Mrozek K et al. High frequency of immunophenotype changes in acute myeloid leukemia at relapse: implications for residual disease detection (Cancer and Leukemia Group B Study 8361). Blood 2001; 97: 3574–3580.

    Article  CAS  PubMed  Google Scholar 

  19. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposed revised criteria for the classification of acute myeloid leukemia A report of the French–American–British Cooperative Group. Ann Intern Med 1985; 103: 620–625.

    Article  CAS  PubMed  Google Scholar 

  20. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposal for the recognition of minimally differentiated acute myeloid leukaemia (AML-MO). Br J Haematol 1991; 78: 325–329.

    Article  CAS  PubMed  Google Scholar 

  21. ISCN.In: Mitelman F (ed). An International System for Human Cytogenetic Nomenclature. Basel: S. Karger, 1995.

  22. Wetzler M, Baer MR, Bernstein SH, Blumenson L, Stewart C, Barcos M et al. Expression of c-mpl mRNA, the receptor for thrombopoietin, in acute myeloid leukemia blasts identifies a group of patients with poor response to intensive chemotherapy. J Clin Oncol 1997; 15: 2262–2268.

    Article  CAS  PubMed  Google Scholar 

  23. Slack JL, Bi W, Livak KJ, Beaubier N, Yu M, Clark M et al. Pre-clinical validation of a novel, highly sensitive assay to detect PML-RARalpha mRNA using real-time reverse-transcription polymerase chain reaction. J Mol Diagn 2001; 3: 141–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Baer MR, Pixley LA, Ford LA, Donohue K, O'Loughlin KL, Minderman H et al. High-dose cytarabine and idarubicin induction produces a high complete remission rate in previously untreated de novo acute myeloid leukemia patients. Blood 2000; 96(Suppl 1): 322a (Abstract).

    Google Scholar 

  25. Kolitz JE, George SL, Hurd D, Hoke E, Dodge RK, Velez-Garcia E et al. Parallel phase I trials of multidrug resistance modulation with PSC-833 in untreated patients with acute myeloid leukemia <60 years old: preliminary results of CALGB 9621. Blood 1999; 94(Suppl 1): 384a (Abstract).

    Google Scholar 

  26. Kolitz JE, George SL, Hurd D, Hoke E, Dodge RK, Caligiuri MA et al. Cytogenetic risk-adapted intensification followed by immunotherapy with recombinant interleukin-2 (rIL-2) in patients (PTS) <60 years old with acute myeloid leukemia (AML) in first complete remission (CR): preliminary results of CALGB 9621. Blood 1999; 94(Suppl 1): 579a (Abstract).

    Google Scholar 

  27. Baer MR, George SL, Dodge RK, O'Loughlin KL, Minderman H, Caligiuri MA et al. Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: Cancer and Leukemia Group B Study 9720. Blood 2002; 100: 1224–1232.

    CAS  PubMed  Google Scholar 

  28. Cheson BD, Cassileth PA, Head DR, Schiffer CA, Bennett JM, Bloomfield CD et al. Report of the National Cancer Institute-sponsored workshop on definitions of diagnosis and response in acute myeloid leukemia. J Clin Oncol 1990; 8: 813–819.

    Article  CAS  PubMed  Google Scholar 

  29. Stewart CC, Stewart SJ . Cell preparation for the identification of leukocytes. In: Darzynkiewicz Z, Crissman H, Robinson JP (eds). Methods of Cell Biology, Vol. 64. New York: Academic Press, Inc, 2001, pp 218–270.

    Google Scholar 

  30. Stewart CC, Stewart SJ . Multiparameter data acquisition and analysis of leukocytes by flow cytometry. In: Darzynkiewicz Z, Crissman H, Robinson JP (eds). Methods of Cell Biology, Vol. 64. New York: Academic Press, Inc, 2001, pp 289–312.

    Google Scholar 

  31. Baer MR, Stewart CC, Lawrence D, Arthur DC, Mrozek K, Strout MP et al. Acute myeloid leukemia with 11q23 translocations: myelomonocytic immunophenotype by multiparameter flow cytometry. Leukemia 1998; 12: 317–325.

    Article  CAS  PubMed  Google Scholar 

  32. Riedy MC, Muirhead KA, Jensen CP, Stewart CC . The use of a photolabeling technique to identify nonviable cells in fixed homologous or heterologous cell populations. Cytometry 1991; 12: 133–139.

    Article  CAS  PubMed  Google Scholar 

  33. Clinical Applications of Flow Cytometry: Immunophenotyping of Leukemic Cells; Proposed Guidelines. Document H43-P, National Committee for Clinical Laboratory Standards, Villanova, PA, 1993.

  34. The SAS System. Release 8.2. SAS Institute Inc.: Cary, NC, USA, 2000.

  35. Lee ET . Statistical Methods for Survival Data Analysis, 2nd edn. New York: John Wiley & Sons, 1995.

    Google Scholar 

  36. Marubini E, Valsecchi MG, Emmerson M . Analyzing Survival Data From Clinical Trials and Observational Studies. New York: John Wiley & Sons, 1995.

    Google Scholar 

  37. Paietta E, Andersen J, Gallagher R, Bennett J, Yunis J, Cassileth P et al. The immunophenotype of acute promyelocytic leukemia (APL): an ECOG study. Leukemia 1994; 8: 1108–1112.

    CAS  PubMed  Google Scholar 

  38. Lazarchick J, Hopkins M . HLA-Dr negative acute non-lymphocytic leukemia. Ann Clin Lab Sci 1998; 28: 150–152.

    CAS  PubMed  Google Scholar 

  39. Fenu S, Carmini D, Mancini F, Guglielmi C, Alimena G, Riccioni R et al. Acute myeloid leukemias M2 potentially misdiagnosed as M3 variant French–American–Britain (FAB) subtype: a transitional form? Leuk Lymphoma 1995; 18(Suppl 1): 49–55.

    Article  PubMed  Google Scholar 

  40. Hurwitz CA, Raimondi SC, Head D, Krance R, Mirro Jr J, Kalwinsky DK et al. Distinctive immunophenotypic features of t(8;21)(q22;q22) acute myeloblastic leukemia in children. Blood 1992; 80: 3182–3188.

    CAS  PubMed  Google Scholar 

  41. Kita K, Nakase K, Miwa H, Masuya M, Nishii K, Morita N et al. Phenotypical characteristics of acute myelocytic leukemia associated with the t(8;21)(q22;q22) chromosomal abnormality: frequent expression of immature B-cell antigen CD19 together with stem cell antigen CD34. Blood 1992; 80: 470–477.

    CAS  PubMed  Google Scholar 

  42. Adriaansen HJ, Jacobs BC, Kappers-Klunne MC, Hahlen K, Hooijkaas H, van Dongen JJ . Detection of residual disease in AML patients by use of double immunological marker analysis for terminal deoxynucleotidyl transferase and myeloid markers. Leukemia 1993; 7: 472–481.

    CAS  PubMed  Google Scholar 

  43. Baer MR, Stewart CC, Lawrence D, Arthur DC, Byrd JC, Davey FR et al. Expression of the neural cell adhesion molecule CD56 is associated with short remission duration and survival in acute myeloid leukemia with t(8;21)(q22;q22). Blood 1997; 90: 1643–1648.

    CAS  PubMed  Google Scholar 

  44. Larson RA, Williams SF, Le Beau MM, Bitter MA, Vardiman JW, Rowley JD . Acute myelomonocytic leukemia with abnormal eosinophils and inv(16) or t(16;16) has a favorable prognosis. Blood 1986; 68: 1242–1249.

    CAS  PubMed  Google Scholar 

  45. Haferlach T, Gassmann W, Loffler H, Jurgensen C, Noak J, Ludwig WD et al., for the AML Cooperative Group. Clinical aspects of acute myeloid leukemias of the FAB types M3 and M4Eo. The AML Cooperative Group. Ann Hematol 1993; 66: 165–170.

    Article  CAS  PubMed  Google Scholar 

  46. Paietta E, Wiernik PH, Andersen J, Bennett J, Yunis J . Acute myeloid leukemia M4 with inv(16) (p13q22) exhibits a specific immunophenotype with CD2 expression. Blood 1993; 82: 2595.

    CAS  PubMed  Google Scholar 

  47. Guglielmi C, Martelli MP, Diverio D, Fenu S, Vegna ML, Cantu-Rajnoldi A et al. Immunophenotype of adult and childhood acute promyelocytic leukaemia: correlation with morphology, type of PML gene breakpoint and clinical outcome. A cooperative Italian study on 196 cases. Br J Haematol 1998; 102: 1035–1041.

    Article  CAS  PubMed  Google Scholar 

  48. Claxton DF, Reading CL, Nagarajan L, Tsujimoto Y, Andersson BS, Estey E et al. Correlation of CD2 expression with PML gene breakpoints in patients with acute promyelocytic leukemia. Blood 1992; 80: 582–586.

    CAS  PubMed  Google Scholar 

  49. Rovelli A, Biondi A, Cantu Rajnoldi A, Conter V, Giudici G, Jankovic M et al. Microgranular variant of acute promyelocytic leukemia in children. J Clin Oncol 1992; 10: 1413–1418.

    Article  CAS  PubMed  Google Scholar 

  50. Orfao A, Chillon MC, Bortoluci AM, Lopez-Berges MC, Garcia-Sanz R, Gonzalez M et al. The flow cytometric pattern of CD34, CD15 and CD13 expression in acute myeloblastic leukemia is highly characteristic of the presence of PML-RARalpha gene rearrangements. Haematologica 1999; 84: 405–412.

    CAS  PubMed  Google Scholar 

  51. Foley R, Soamboonsrup P, Carter RF, Benger A, Meyer R, Walker I et al. CD34-positive acute promyelocytic leukemia is associated with leukocytosis, microgranular/hypogranular morphology, expression of CD2 and bcr3 isoform. Am J Hematol 2001; 67: 34–41.

    Article  CAS  PubMed  Google Scholar 

  52. Tucker J, Dorey E, Gregory WM, Simpson AP, Amess JA, Lister TA et al. Immunophenotype of blast cells in acute myeloid leukemia may be a useful predictive factor for outcome. Hematol Oncol 1990; 8: 47–58.

    Article  CAS  PubMed  Google Scholar 

  53. Terstappen LW, Safford M, Konemann S, Loken MR, Zurlutter K, Buchner T et al. Flow cytometric characterization of acute myeloid leukemia. Part II. Phenotypic heterogeneity at diagnosis. Leukemia 1992; 6: 70–80.

    CAS  PubMed  Google Scholar 

  54. Reading CL, Estey EH, Huh YO, Claxton DF, Sanchez G, Terstappen LW et al. Expression of unusual immunophenotype combinations in acute myelogenous leukemia. Blood 1993; 81: 3083–3090.

    CAS  PubMed  Google Scholar 

  55. Scott AA, Head DR, Kopecky KJ, Appelbaum FR, Theil KS, Grever MR et al. HLA-DR−, CD33+, CD56+, CD16− myeloid/natural killer cell acute leukemia: a previously unrecognized form of acute leukemia potentially misdiagnosed as French–American–British acute myeloid leukemia-M3. Blood 1994; 84: 244–255.

    CAS  PubMed  Google Scholar 

  56. Solary E, Casasnovas RO, Campos L, Bene MC, Faure G, Maingon P et al. Surface markers in adult acute myeloblastic leukemia: correlation of CD19+, CD34+ and CD14+/DR-phenotypes with shorter survival. Groupe d'Etude Immunologique des Leucemies (GEIL). Leukemia 1992; 6: 393–399.

    CAS  PubMed  Google Scholar 

  57. Sartoris S, Accolla RS . Transcriptional regulation of MHC class II genes. Int J Clin Lab Res 1995; 25: 71–78.

    Article  CAS  PubMed  Google Scholar 

  58. Wetzler M, Baer MR, Stewart SJ, Donahue K, Ford L, Stewart CC et al. HLA class I antigen cell surface expression is preserved on acute myeloid leukemia blasts at diagnosis and at relapse. Leukemia 2001; 15: 128–133.

    Article  CAS  PubMed  Google Scholar 

  59. Heath WR, Carbone FR . Cross-presentation in viral immunity and self-tolerance. Nat Rev Immunol 2001; 1: 126–134.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported partially by National Cancer Institute Grants CA 16056 and CA 67108.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wetzler, M., McElwain, B., Stewart, C. et al. HLA-DR antigen-negative acute myeloid leukemia. Leukemia 17, 707–715 (2003). https://doi.org/10.1038/sj.leu.2402865

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402865

Keywords

This article is cited by

Search

Quick links