Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Keynote Address
  • Published:

New targets for therapy in acute myeloid leukemia

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K, Sonoda Y, Fujimoto T, Misawa S . Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996; 10: 1911–1918.

    CAS  PubMed  Google Scholar 

  2. Yokota S, Kiyoi H, Nakao M, Iwai T, Misawa S, Okuda T, Sonoda Y, Abe T, Kahsima K, Matsuo Y, Naoe T . Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia 1997; 11: 1605–1609.

    Article  CAS  PubMed  Google Scholar 

  3. Ridge SA, Worwood M, Oscier D, Jacobs A, Padua RA . FMS mutations in myelodysplastic leukemic, and normal subjects. Proc Natl Acad Sci USA 1990; 87: 1377–1380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gari M, Goodeve A, Wilson G, Winship P, Langabeer S, Linch D, Vandenberghe E, Peake I, Reilly J . c-kit proto-oncogene exon 8 in-frame deletion plus insertion mutations in acute myeloid leukaemia. Br J Haematol 1999; 105: 894–900.

    Article  CAS  PubMed  Google Scholar 

  5. Kelly LM, Liu Q, Kutok JL, Williams IR, Boulton CL, Gilliland DG . FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood 2002; 99: 310–318.

    Article  CAS  PubMed  Google Scholar 

  6. Deguchi K, Gilliland DG . Cooperativity between mutations in tyrosine kinases and in hematopoietic transcription factors in AML. Leukemia 2002; 16: 740–744.

    Article  CAS  PubMed  Google Scholar 

  7. Stirewalt DL, Kopecky KJ, Meshinchi S, Appelbaum FR, Slovak ML, Willman CL, Radich JP . FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood 2001; 97: 3589–3595.

    Article  CAS  PubMed  Google Scholar 

  8. Meshinchi S, Woods WG, Stirewalt DL, Sweetser DA, Buckley JD, Tjoa TK, Bernstein ID, Radich JP . Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood 2001; 97: 89–94.

    Article  CAS  PubMed  Google Scholar 

  9. Rombouts WJ, Blokland I, Lowenberg B, Ploemacher RE . Biological characteristics and prognosis of adult acute myeloid leukemia with internal tandem duplications in the Flt3 gene. Leukemia 2000; 14: 675–683.

    Article  CAS  PubMed  Google Scholar 

  10. Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U, Wermke M, Bornhauser M, Ritter M, Neubauer A, Ehninger G, Illmer T . Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002; 99: 4326–4335.

    Article  CAS  PubMed  Google Scholar 

  11. Sawyers CL . Finding the next gleevec: FLT3 targeted kinase inhibitor therapy for acute myeloid leukemia. Cancer Cell 2002; 1: 413–415.

    Article  CAS  PubMed  Google Scholar 

  12. Kelly LM, Yu J-C, Boulton CL, Apatira M, Li J, Sullivan CM, Williams I, Amaral SM, Curley DP, Duclos N, Neuberg D, Scarborough RM, Pandey A, Hollenbach S, Abe K, Lokker NA, Gilliand DG, Giese NA . CT53518, a novel selective FLT3 antagonist for the treatment of acute myelogenous leukemia (AML). Cancer Cell 2002; 1: 421–432.

    Article  CAS  PubMed  Google Scholar 

  13. Weisberg E, Boulton C, Kelly LM, Manley P, Fabbro D, Meyer T, Gilliand DG, Griffin JD . Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell 2002; 1: 433–443.

    Article  CAS  PubMed  Google Scholar 

  14. Yee KWH, O'Farrell AM, Smolich BD, Cherrington JM, Wait CL, Griffith DJ, McGreevey LS, Heinrich MC . SU5416 and SU5614 inhibit wild-type and activated mutant FLT3 signaling in leukemia cells. Blood 2001; 16 (Part 1): 838a, #3484 (Abstract).

    Google Scholar 

  15. Radich JP, Kopecky KJ, Willman CL, Weick J, Head D, Appelbaum F, Collins SJ . N-ras mutations in adult de novo acute myelogenous leukemia: prevalence and clinical significance. Blood 1990; 76: 801–807.

    CAS  PubMed  Google Scholar 

  16. Karp JE, Lancet JE, Kaufmann SH, End DW, Wright JJ, Bol K, Horak I, Tidwell ML, Liesveld J, Kottke TJ, Ange D, Buddharaju L, Gojo I, Highsmith WE, Belly RT, Hohl RJ, Rybak ME, Thibault A, Rosenblatt J . Clinical and biologic activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: a phase 1 clinical–laboratory correlative trial. Blood 2001; 97: 3361–3369.

    Article  CAS  PubMed  Google Scholar 

  17. Wu WS, Vallian S, Seto E, Yang WM, Edmondson D, Roth S, Chang KS . The growth suppressor PML represses transcription by functionally and physically interacting with histone deacetylases. Mol Cell Biol 2001; 21: 2259–2268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ferrara FF, Fazi F, Bianchini A, Padula F, Gelmetti V, Minucci S, Mancini M, Pelicci PG, Lo CF, Nervi C . Histone deacetylase-targeted treatment restores retinoic acid signaling and differentiation in acute myeloid leukemia. Cancer Res 2001; 61: 2–7.

    PubMed  Google Scholar 

  19. Campos L, Rouault J-P, Sabido O, Oriol P, Roubi N, Vasselon C, Archimbaud E, Maguad J-P, Guyotat D . High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood 1993; 81: 3091–3096.

    CAS  PubMed  Google Scholar 

  20. Banker DE, Groudine M, Norwood T, Appelbaum FR . Measurement of spontaneous and therapeutic agent-induced apoptosis with BCL-2 protein expression in acute myeloid leukemia. Blood 1997; 89: 243–255.

    CAS  PubMed  Google Scholar 

  21. Konopleva M, Tari AM, Estrov Z, Harris D, Xie Z, Zhao S, Lopez-Berestein G, Andreeff M . Liposomal Bcl-2 antisense oligonucleotides enhance proliferation, sensitize acute myeloid leukemia to cytosine-arabinoside, and induce apoptosis independent of other antiapoptotic proteins. Blood 2000; 95: 3929–3938.

    CAS  PubMed  Google Scholar 

  22. Banker DE, Cooper JJ, Fennell DA, Willman CL, Appelbaum FR, Cotter FE . PK11195, a peripheral benzodiazepine receptor ligand, chemosensitizes acute myeloid leukemia cells to relevant therapeutic agents by more than one mechanism. Leuk Res 2002; 26: 91–106.

    Article  CAS  PubMed  Google Scholar 

  23. Dimitroulakos J, Nohynek D, Backway KL, Hedley DW, Yeger H, Freedman MH, Minden MD, Penn LZ . Increased sensitivity of acute myeloid leukemias to lovastatin-induced apoptosis: a potential therapeutic approach. Blood 1999; 93: 1308–1318.

    CAS  PubMed  Google Scholar 

  24. Wong WW, Dimitroulakos J, Minden MD, Penn LZ . HMG-CoA reductase inhibitors and the malignant cell: the statin family of drugs as triggers of tumor-specific apoptosis (review). Leukemia 2002; 16: 508–519.

    Article  CAS  PubMed  Google Scholar 

  25. Stirewalt DL, Appelbaum FR, Willman CL, Zager RA, Banker DE . Mevastatin can increase toxicity in primary AMLs exposed to standard therapeutic agents, but statin efficacy is not simply associated with ras hotspot mutations or overexpression. Leuk Res 2002; 1572: 1–13.

    Google Scholar 

  26. Feldman E, Kalaycio M, Schulman P, Frankel S, Weiner G, Schwarzberg L, Vélez-Garcia E, Jurcic J, Scheinberg D, Wedel N . Humanized monoclonal anti-CD33 antibody HuM195 in the treatment of relapsed/refractory acute myelogenous leukemia (AML): preliminary report of a phase II study. Program/Proc Am Soc Clin Oncol 1999; 18: 4a, #12 (abstract).

    Google Scholar 

  27. Sievers EL, Larson RA, Stadmauer EA, Estey E, Löwenberg B, Dombret H, Karanes C, Theobold M, Bennett JM, Sherman ML, Berger MS, Eten CB, Loken MR, van Dongen JJM, Bernstein ID, Appelbaum FR . Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol 2001; 19: 3244–3254.

    Article  CAS  PubMed  Google Scholar 

  28. Ruffner KL, Matthews DC . Current uses of monoclonal antibodies in the treatment of acute leukemia (review). Semin Oncol 2000; 27: 531–539.

    CAS  PubMed  Google Scholar 

  29. Bunjes DW, Buchmann I, Duncker C, Seitz U, Wiesneth M, Stefanic M, Kotzerke J, von Harsdorf S, Buck A, Glatting G, Dohr D, Grimminger W, Karakas T, Munzert G, Bergmann L, Reske SN, Döhner H . Using radiolabeled monoclonal antibodies to intensify the conditioning regimen for patients with high-risk AML and MDS: a single centre experience of 36 transplants. Blood 2000; 96 (Part 1): 386a, #1667 (Abstract).

    Google Scholar 

  30. Warren EH, Greenberg PD, Riddell SR . Cytotoxic T-lymphocyte-defined human minor histocompatibility antigens with a restricted tissue distribution. Blood 1998; 91: 2197–2207.

    CAS  PubMed  Google Scholar 

  31. Mutis T, Verdijk R, Schrama E, Esendam B, Brand A, Goulmy E . Feasibility of immunotherapy of relapsed leukemia with ex vivo-generated cytotoxic T lymphocytes specific for hematopoietic system-restricted minor histocompatibility antigens. Blood 1999; 93: 2336–2341.

    CAS  PubMed  Google Scholar 

  32. Pinilla-Ibarz J, Cathcart K, Korontsvit T, Soignet S, Bocchia M, Caggiano J, Lai L, Jimenez J, Kolitz J, Scheinberg DA . Vaccination of patients with chronic myelogenous leukemia with bcr-abl oncogene breakpoint fusion peptides generates specific immune responses. Blood 2000; 95: 1781–1787.

    CAS  PubMed  Google Scholar 

  33. Molldrem JJ, Lee PP, Wang C, Felio K, Kantarjian HM, Champlin RE, Davis MM . Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med 2000; 6: 1018–1023.

    Article  CAS  PubMed  Google Scholar 

  34. Gao L, Bellantuono I, Elsässer A, Marley SB, Gordon MY, Goldman JM, Stauss HJ . Selective elimination of leukemic CD34+ progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood 2000; 95: 2198–2203.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is part of a series of keynote addresses to be published in Leukemia. They were presented at the Acute Leukemia Forum, San Francisco, 19 April 2002. Supported by an unrestricted educational grant from Immunex Corporation.

This work was supported, in part, by grant numbers CA-15704 and CA-18029 from the National Cancer Institute, National Institutes of Health, DHHS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Appelbaum, F. New targets for therapy in acute myeloid leukemia. Leukemia 17, 492–495 (2003). https://doi.org/10.1038/sj.leu.2402810

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402810

This article is cited by

Search

Quick links