Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight
  • Published:

Spotlight on IMATINIB as a Model for Signal Transduction Inhibitors

Drug responses of imatinib mesylate-resistant cells: synergism of imatinib with other chemotherapeutic drugs

Abstract

Imatinib mesylate (STI571, Glivec, Gleevec) is a powerful inhibitor of the tyrosine kinase activity of Bcr-Abl, the oncoprotein responsible for chronic myeloid leukemia (CML). The drug shows great efficacy in chronic phase, but is less effective in maintaining hematologic remissions in blast crisis patients. Our group has previously described several cell lines made resistant to imatinib. We now examine the question of cross-resistance to other chemotherapeutic drugs used in CML. Four paired imatinib-sensitive/resistant CML cell lines were assessed by caspase-3 and MTS assays for their proliferative response to cytosine arabinoside (Ara-C), daunorubicin (DNR), homoharringtonine (HHT) and hydroxyurea (HU), either alone or in combination with imatinib. Primary blasts from advanced-stage CML patients refractory to imatinib therapy were studied by semi-solid media clonogenic assays. We found that these drugs are generally capable of major inhibition of proliferation of the CML cell lines, although differential responses to DNR and HHT were noted between some sensitive and resistant cell line pairs, implying that resistance to imatinib may confer a growth advantage under such conditions. The four drugs were also effective in preventing the formation of progenitor cell colonies from CML patients both before treatment with imatinib, and after relapse on the drug. Isobolographic analysis implied that these drugs will generally combine well with imatinib, and in some cases will be synergistic. We conclude that Ara-C, DNR or HHT, either alone or in combination with imatinib, are likely to be the best therapeutic alternatives in the management of patients who become resistant to imatinib monotherapy.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Daley GQ, Van Etten RA, Baltimore D . Induction of chronic mye-logenous leukemia in mice by the P210bcr/abl gene of the Phila-delphia chromosome Science 1990 247: 824–830

    Article  CAS  Google Scholar 

  2. Lugo TG, Pendergast AM, Muller AJ, Witte ON . Tyrosine kinase activity and transformation potency of bcr-abl oncogene products Science 1990 247: 1079–1082

    Article  CAS  Google Scholar 

  3. Buchdunger E, Zimmermann J, Mett H, Meyer T, Muller M, Druker BJ, Lydon NB . Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative Cancer Res 1996 56: 100–104

    CAS  PubMed  Google Scholar 

  4. Deininger MW, Goldman JM, Melo JV . The molecular biology of chronic myeloid leukemia Blood 2000 96: 3343–3356

    CAS  PubMed  Google Scholar 

  5. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL . Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia N Engl J Med 2001 344: 1031–1037

    Article  CAS  Google Scholar 

  6. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM, Capdeville R, Talpaz M . Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome N Engl J Med 2001 344: 1038–1042

    Article  CAS  Google Scholar 

  7. Deininger MWN, Goldman JM, Lydon NB, Melo JV . The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL positive cells Blood 1997 90: 3691–3698

    CAS  PubMed  Google Scholar 

  8. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, Zimmermann J, Lydon NB . Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells Nat Med 1996 2: 561–566

    Article  CAS  Google Scholar 

  9. Gambacorti-Passerini C, le Coutre P, Mologni L, Fanelli M, Bertazzoli C, Marchesi E, Di NM, Biondi A, Corneo GM, Belotti D, Pogliani E, Lydon NB . Inhibition of the ABL kinase activity blocks the proliferation of BCR/ABL+ leukemic cells and induces apoptosis Blood Cells Mol Dis 1997 23: 380–394

    Article  CAS  Google Scholar 

  10. Mahon FX, Deininger MW, Schultheis B, Chabrol J, Reiffers J, Goldman JM, Melo JV . Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance Blood 2000 96: 1070–1079

    CAS  PubMed  Google Scholar 

  11. le Coutre P, Tassi E, Varella-Garcia M, Barni R, Mologni L, Cabrita G, Marchesi E, Supino R, Gambacorti-Passerini C . Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification Blood 2000 95: 1758–1766

    CAS  PubMed  Google Scholar 

  12. Weisberg E, Griffin JD . Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines Blood 2000 95: 3498–3505

    CAS  PubMed  Google Scholar 

  13. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL . Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification Science 2001 293: 876–880

    Article  CAS  Google Scholar 

  14. Kreil S, Muller MC, Lahaye T, La Rosee P, Corbin AS, Schoch C, Cross NCP, Berger U, Rieder H, Druker BJ, Gschaidmeier H, Hehlmann R, Hochhaus A . Molecular and chromosomal mechanisms of resistance in CML patients after STI571 (Glivec) therapy Blood 2001 98: 435a

    Google Scholar 

  15. Drexler HG . The Leukemia–Lymphoma Cell Line Facts Book Academic Press: London 2000

    Google Scholar 

  16. Chou TC, Talalay P . Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors Adv Enzyme Regul 1984 22: 27–55

    Article  CAS  Google Scholar 

  17. Dan S, Naito M, Tsuruo T . Selective induction of apoptosis in Philadelphia chromosome-positive chronic myelogenous leukemia cells by an inhibitor of Cell Death Differ 1998 5: 710–715

    Article  CAS  Google Scholar 

  18. Kano Y, Akutsu M, Tsunoda S, Mano H, Sato Y, Honma Y, Furukawa Y . In vitro cytotoxic effects of a tyrosine kinase inhibitor STI571 in combination with commonly used antileukemic agents Blood 2001 97: 1999–2007

    Article  CAS  Google Scholar 

  19. Topaly J, Zeller WJ, Fruehauf S . Synergistic activity of the new ABL-specific tyrosine kinase inhibitor STI571 and chemotherapeutic drugs on BCR-ABL-positive chronic myelogenous leukemia cells Leukemia 2001 15: 342–347

    Article  CAS  Google Scholar 

  20. Thiesing JT, Ohno-Jones S, Kolibaba KS, Druker BJ . Efficacy of STI571, an abl tyrosine kinase inhibitor, in conjunction with other antileukemic agents against bcr-abl-positive cells Blood 2000 96: 3195–3199

    CAS  PubMed  Google Scholar 

  21. Fang G, Kim CN, Perkins CL, Ramadevi N, Winton E, Wittmann S, Bhalla KN . CGP57148B (STI-571) induces differentiation and apoptosis and sensitizes Bcr-Abl-positive human leukemia cells to apoptosis due to antileukemic drugs Blood 2000 96: 2246–2253

    CAS  PubMed  Google Scholar 

  22. O'Brien S, Kantarjian H, Keating M, Beran M, Koller C, Robertson LE, Hester J, Rios MB, Andreeff M, Talpaz M . Homoharringtonine therapy induces responses in patients with chronic myelogenous leukemia in late chronic phase Blood 1995 86: 3322–3326

    CAS  PubMed  Google Scholar 

  23. O'Brien S, Kantarjian H, Koller C, Feldman E, Beran M, Andreeff M, Giralt S, Cheson B, Keating M, Freireich E, Rios MB, Talpaz M . Sequential homoharringtonine and interferon-alpha in the treatment of early chronic phase chronic myelogenous leukemia Blood 1999 93: 4149–4153

    CAS  PubMed  Google Scholar 

  24. Kantarjian HM, Talpaz M, Smith TL, Cortes J, Giles FJ, Rios MB, Mallard S, Gajewski J, Murgo A, Cheson B, O'Brien S . Homoharringtonine and low-dose cytarabine in the management of late chronic-phase chronic myelogenous leukemia J Clin Oncol 2000 18: 3513–3521

    Article  CAS  Google Scholar 

  25. Elford HL . Effect of hydroxyurea on ribonucleotide reductase Biochem Biophys Res Commun 1968 33: 129–135

    Article  CAS  Google Scholar 

  26. Gutterman JU . Cytokine therapeutics: lessons from interferon alpha Proc Natl Acad Sci USA 1994 91: 1198–1205

    Article  CAS  Google Scholar 

  27. Gutierrez P, Delgado MD, Richard C, Moreau-Gachelin F, Leon J . Interferon induces up-regulation of Spi-1/PU.1 in human leukemia K562 cells Biochem Biophys Res Commun 1997 240: 862–868

    Article  CAS  Google Scholar 

  28. Tipping AJ, Mahon FX, Lagarde V, Goldman JM, Melo JV . Restoration of sensitivity to STI571 in STI571-resistant chronic myeloid leukemia cells Blood 2001 98: 3864–3867

    Article  CAS  Google Scholar 

  29. Barthe C, Cony-Makhoul P, Melo JV, Reiffers J, Mahon FX . Roots of clinical resistance to STI-571 cancer therapy Science 2001 293: 2163

    Article  CAS  Google Scholar 

  30. Hochhaus A, Kreil S, Corbin A, La Rosee P, Lahaye T, Berger U, Cross NC, Linkesch W, Druker BJ, Hehlmann R . Roots of clinical resistance to STI-571 cancer therapy Science 2001 293: 2163

    Article  CAS  Google Scholar 

  31. Shah NP, Nicoll JM, Gorre ME, Paquette R, Ford J, Sawyers CL . Resistance to Gleevec: sequence analysis reveals a spectrum of BCR/ABL kinase domain mutations in both acquired- and de novo-resistant cases of chronic myelogenous leukemia (CML) in myeloid blast crisis Blood 2001 98: 770a

    Google Scholar 

  32. Branford S, Rudzki Z, Walsh S, Grigg A, Arthur C, Taylor K, Herrmann R, Lynch KP, Hughes TP . High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance Blood 2002 99: 3472–3475

    Article  CAS  Google Scholar 

  33. von Bubnoff N, Schneller F, Peschel C, Duyster J . BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study Lancet 2002 359: 487–491

    Article  CAS  Google Scholar 

  34. Hofmann WK, Jones LC, Lemp NA, de Vos S, Gschaidmeier H, Hoelzer D, Ottmann OG, Koeffler HP . Ph(+) acute lymphoblastic leukemia resistant to the tyrosine kinase inhibitor STI571 has a unique BCR-ABL gene mutation Blood 2002 99: 1860–1862

    Article  Google Scholar 

  35. Hoover RR, Mahon FX, Melo JV, Daley GQ . Overcoming STI571 resistance with the farnesyltransferase inhibitor SCH66336 Blood 2002 100: 1068–1071

    Article  CAS  Google Scholar 

  36. Braess J, Wegendt C, Jahns-Streubel G, Kern W, Keye S, Unterhalt M, Schleyer E, Hiddemann W . Successful modulation of high-dose cytosine arabinoside metabolism in acute myeloid leukaemia by haematopoietic growth factors: no effect of ribonucleotide reductase inhibitors fludarabine and gemcitabine Br J Haematol 2000 109: 388–395

    Article  CAS  Google Scholar 

  37. Gewirtz DA . A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin Biochem Pharmacol 1999 57: 727–741

    Article  CAS  Google Scholar 

  38. Rodriguez GI, Kuhn JG, Weiss GR, Hilsenbeck SG, Eckardt JR, Thurman A, Rinaldi DA, Hodges S, Von Hoff DD, Rowinsky EK . A bioavailability and pharmacokinetic study of oral and intravenous hydroxyurea Blood 1998 91: 1533–1541

    CAS  PubMed  Google Scholar 

  39. Savaraj N, Lu K, Dimery I, Feun LG, Burgess M, Keating M, Loo TL . Clinical pharmacology of homoharringtonine Cancer Treat Rep 1986 70: 1403–1407

    CAS  PubMed  Google Scholar 

  40. Gutterman JU, Fine S, Quesada J, Horning SJ, Levine JF, Alexanian R, Bernhardt L, Kramer M, Spiegel H, Colburn W, Trown P, Merigan T, Dziewanowski Z . Recombinant leukocyte A interferon: pharmacokinetics, single-dose tolerance, and biologic effects in cancer patients Ann Intern Med 1982 96: 549–556

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Leukaemia Research Fund, UK (AJT, GZ, JMG, JM) and the Association pour la recherche sur le cancer and Fondation de la recherche medicale, France (FXM, VL). We are grateful to Dr Elisabeth Buchdunger (Novartis Pharma, Basel, Switzerland) for providing imatinib mesylate, Dr Jean Pierre Robin (Oncopharm, Le Mans, France) for homoharringtonine, and Dr Richard Szydlo for help with the statistical analysis.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tipping, A., Mahon, F., Zafirides, G. et al. Drug responses of imatinib mesylate-resistant cells: synergism of imatinib with other chemotherapeutic drugs. Leukemia 16, 2349–2357 (2002). https://doi.org/10.1038/sj.leu.2402775

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402775

Keywords

This article is cited by

Search

Quick links