Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Antiproliferative effects of a non-β-oxidizable fatty acid, tetradecylthioacetic acid, in native human acute myelogenous leukemia blast cultures

Abstract

The lipid metabolism is important in the regulation of cell proliferation. We have examined effects of a fatty acid analogue, tetradecylthioacetic acid (TTA), on the functional phenotype of native, human AML cells. TTA inhibited AML blast proliferation in the presence of single cytokines (GM-CSF and SCF: P > 0.05, 35 patients with detectable proliferation) and a combination of cytokines (P < 0.005, n = 21). This antiproliferative effect was generally stronger than for the normal fatty acid palmitic acid (PA). Both TTA and PA increased the secretion of tumor necrosis factor α (TNFα) (P < 0.05, 27 patients with detectable cytokine release), but only PA increased interleukein 1β (IL-1β) release (P < 0.005, n = 34). AML blast populations varied significantly in their levels and activities of metabolites and enzymes characterizing oxidative status and fatty acid metabolism, and there was no significant correlation between the intrinsic oxidative status and the effects of PA and TTA on blast proliferation. Although TTA reduced the proliferation of mitogen-stimulated normal T cells derived from healthy individuals (P < 0.05, n = 8), no adverse effects were seen on peripheral blood cell counts (reticulocytes, platelets, total white blood cells, differential leukocyte counts) for healthy volunteers receiving TTA (oral administration of 1000 mg/day for 7 consecutive days). Our results suggest that TTA can inhibit AML blast proliferation through pathways that are unrelated to autocrine cytokine secretion and intrinsic oxidative status.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Paumen MB, Ishida Y, Muramatsu M, Yamamoto M, Honjo T . Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis J Biol Chem 1997 272: 3324–3329

    Article  CAS  PubMed  Google Scholar 

  2. Finstad HS, Myhrstad MC, Heimli H, Lomo J, Blomhoff HK, Kolset SO, Drevon CA . Multiplication and death-type of leukemia cell lines exposed to very long-chain polyunsaturated fatty acids Leukemia 1998 12: 921–929

    Article  CAS  PubMed  Google Scholar 

  3. Jiang WG, Bryce RP, Horrobin DF . Essential fatty acids: molecular and cellular basis of their anti- cancer action and clinical implications Crit Rev Oncol Hematol 1998 27: 179–209

    Article  CAS  PubMed  Google Scholar 

  4. Kumar GS, Das UN . Free radical-dependent suppression of growth of mouse myeloma cells by alpha-linolenic and eicosapentaenoic acids in vitro Cancer Lett 1995 92: 27–38

    Article  CAS  PubMed  Google Scholar 

  5. Palakurthi SS, Fluckiger R, Aktas H, Changolkar AK, Shahsafaei A, Harneit S, Kilic E, Halperin JA . Inhibition of translation initiation mediates the anticancer effect of the n-3 polyunsaturated fatty acid eicosapentaenoic acid Cancer Res 2000 60: 2919–2925

    CAS  PubMed  Google Scholar 

  6. Das UN . Essential fatty acids, lipid peroxidation and apoptosis Prostaglandins Leukot Essent Fatty Acids 1999 61: 157–163

    Article  CAS  PubMed  Google Scholar 

  7. Finstad HS, Dyrendal H, Myhrstad MC, Heimli H, Drevon CA . Uptake and activation of eicosapentaenoic acid are related to accumulation of triacylglycerol in Ramos cells dying from apoptosis J Lipid Res 2000 41: 554–563

    CAS  PubMed  Google Scholar 

  8. Unger RH, Zhou YT . Lipotoxicity of beta-cells in obesity and in other causes of fatty acid spillover Diabetes 2001 50 (Suppl. 1): S118–121

    Article  Google Scholar 

  9. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P et al. The nuclear receptor superfamily: the second decade Cell 1995 83: 835–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mangelsdorf DJ, Evans RM . The RXR heterodimers and orphan receptors Cell 1995 83: 841–850

    Article  CAS  PubMed  Google Scholar 

  11. Demetri GD, Fletcher CD, Mueller E, Sarraf P, Naujoks R, Campbell N, Spiegelman BM, Singer S . Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-gamma ligand troglitazone in patients with liposarcoma Proc Natl Acad Sci USA 1999 96: 3951–3956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mueller E, Smith M, Sarraf P, Kroll T, Aiyer A, Kaufman DS, Oh W, Demetri G, Figg WD, Zhou XP, Eng C, Spiegelman BM, Kantoff PW . Effects of ligand activation of peroxisome proliferator-activated receptor gamma in human prostate cancer Proc Natl Acad Sci USA 2000 97: 10990–10995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Raspe E, Madsen L, Lefebvre AM, Leitersdorf I, Gelman L, Peinado-Onsurbe J, Dallongeville J, Fruchart JC, Berge R, Staels B . Modulation of rat liver apolipoprotein gene expression and serum lipid levels by tetradecylthioacetic acid (TTA) via PPARalpha activation J Lipid Res 1999 40: 2099–2110

    CAS  PubMed  Google Scholar 

  14. Forman BM, Chen J, Evans RM . Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta Proc Natl Acad Sci USA 1997 94: 4312–4317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Westergaard M, Henningsen J, Svendsen ML, Johansen C, Jensen UB, Schroder HD, Kratchmarova I, Berge RK, Iversen L, Bolund L, Kragballe K, Kristiansen K . Modulation of keratinocyte gene expression and differentiation by PPAR-selective ligands and tetradecylthioacetic acid J Invest Dermatol 2001 116: 702–712

    Article  CAS  PubMed  Google Scholar 

  16. Berge K, Tronstad KJ, Flindt EN, Rasmussen TH, Madsen L, Kristiansen K, Berge RK . Tetradecylthioacetic acid inhibits growth of rat glioma cells ex vivo and in vivo via PPAR-dependent and PPAR-independent pathways Carcinogenesis 2001 22: 1747–1755

    Article  CAS  PubMed  Google Scholar 

  17. Aarsland A, Berge RK . Peroxisome proliferating sulphur- and oxy-substituted fatty acid analogues are activated to acyl coenzyme A thioesters Biochem Pharmacol 1991 41: 53–61

    Article  CAS  PubMed  Google Scholar 

  18. Madsen L, Froyland L, Grav HJ, Berge RK . Up-regulated delta 9-desaturase gene expression by hypolipidemic peroxisome-proliferating fatty acids results in increased oleic acid content in liver and VLDL: accumulation of a delta 9-desaturated metabolite of tetradecylthioacetic acid J Lipid Res 1997 38: 554–563

    CAS  PubMed  Google Scholar 

  19. Skrede S, Sorensen HN, Larsen LN, Steineger HH, Hovik K, Spydevold OS, Horn R, Bremer J . Thia fatty acids, metabolism and metabolic effects Biochim Biophys Acta 1997 1344: 115–131

    Article  CAS  PubMed  Google Scholar 

  20. Skorve J, Al-Shurbaji A, Asiedu D, Björkhem I, Berglund L, Berge RK . On the mechanism of the hypolipidemic effect of sulfur-substituted hexadecanedoic acid (3-thiadicarboxylic acid) in normolipidemic rats J Lipid Res 1993 34: 1177–1185

    CAS  PubMed  Google Scholar 

  21. Kryvi H, Aarsland A, Berge RK . Morphologic effects of sulfur-substituted fatty acids on rat hepatocytes with special reference to proliferation of peroxisomes and mitochondria J Struct Biol 1990 103: 257–265

    Article  CAS  PubMed  Google Scholar 

  22. Berge RK, Aarsland A, Kryvi H, Bremer J, Aarsaether N . Alkylthioacetic acid (3-thia fatty acids) – a new group of non-beta- oxidizable, peroxisome-inducing fatty acid analogues. I. A study on the structural requirements for proliferation of peroxisomes and mitochondria in rat liver Biochim Biophys Acta 1989 1004: 345–356

    Article  CAS  PubMed  Google Scholar 

  23. Froyland L, Helland K, Totland GK, Kryvi H, Berge RK . A hypolipidemic peroxisome proliferating fatty acid induces polydispersity of rat liver mitochondria Biol Cell 1996 87: 105–112

    Article  CAS  PubMed  Google Scholar 

  24. Tronstad K, Berge K, Dyroy E, Madsen L, Berge R . Growth reduction in glioma cells after treatment wtih tetradecylthioacetic acid. Changes in fatty acid metabolism and oxidative status Biochem Pharmacol 2001 61: 639–649

    Article  CAS  PubMed  Google Scholar 

  25. Tronstad K, Berge K, Flindt E, Kristiansen K, Berge R . Optimization of methods and treatment conditions for studying effects of fatty acids on cell growth Lipids 2001 36: 305–313

    Article  CAS  PubMed  Google Scholar 

  26. Abdi-Dezfuli F, Berge RK, Rasmussen M, Thorsen T, Aakvaag A . Effects of saturated and polyunsaturated fatty acids and their 3-thia fatty acid analogues on MCF-7 breast cancer cell growth Ann NY Acad Sci 1994 744: 306–309

    Article  CAS  PubMed  Google Scholar 

  27. Abdi-Dezfuli F, Froyland L, Thorsen T, Aakvaag A, Berge RK . Eicosapentaenoic acid and sulphur substituted fatty acid analogues inhibit the proliferation of human breast cancer cells in culture Breast Cancer Res Treat 1997 45: 229–239

    Article  CAS  PubMed  Google Scholar 

  28. Huang P, Feng L, Oldham EA, Keating MJ, Plunkett W . Superoxide dismutase as a target for the selective killing of cancer cells Nature 2000 407: 390–395

    Article  CAS  PubMed  Google Scholar 

  29. Dai J, Weinberg RS, Waxman S, Jing Y . Malignant cells can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system Blood 1999 93: 268–277

    CAS  PubMed  Google Scholar 

  30. Sordet O, Rebe C, Leroy I, Bruey JM, Garrido C, Miguet C, Lizard G, Plenchette S, Corcos L, Solary E . Mitochondria-targeting drugs arsenic trioxide and lonidamine bypass the resistance of TPA-differentiated leukemic cells to apoptosis Blood 2001 97: 3931–3940

    Article  CAS  PubMed  Google Scholar 

  31. Backway KL, McCulloch EA, Chow S, Hedley DW . Relationships between the mitochondrial permeability transition and oxidative stress during ara-C toxicity Cancer Res 1997 57: 2446–2451

    CAS  PubMed  Google Scholar 

  32. Spydevold O, Bremer J . Induction of peroxisomal beta-oxidation in 7800 C1 Morris hepatoma cells in steady state by fatty acids and fatty acid analogues Biochim Biophys Acta 1989 1003: 72–79

    Article  CAS  PubMed  Google Scholar 

  33. Bruserud O, Ulvestad E . Acute myelogenous leukemia blasts as accessory cells during in vitro T lymphocyte activation Cell Immunol 2000 206: 36–50

    Article  CAS  PubMed  Google Scholar 

  34. Bruserud O, Gjertsen BT, Brustugun OT, Bassoe CF, Nesthus I, Akselsen EP, Buhring HJ, Pawelec G . Effects of interleukin 10 on blast cells derived from patients with acute myelogenous leukemia Leukemia 1995 9: 1910–1920

    CAS  PubMed  Google Scholar 

  35. Bruserud O, Gjertsen BT, Foss B, Huang TS . New strategies in the treatment of acute myelogenous leukemia (AML): in vitro culture of AML cells – the present use in experimental studies and the possible importance for future therapeutic approaches Stem Cells 2001 19: 1–11

    Article  CAS  PubMed  Google Scholar 

  36. Bruserud O, Pawelec G . Effects of dipyridamole and R-verapamil on in vitro proliferation of blast cells from patients with acute myelogenous leukaemia Leuk Res 1993 17: 507–513

    Article  CAS  PubMed  Google Scholar 

  37. Madsen L, Froyland L, Dyroy E, Helland K, Berge RK . Docosahexaenoic and eicosapentaenoic acids are differently metabolized in rat liver during mitochondria and peroxisome proliferation J Lipid Res 1998 39: 583–593

    CAS  PubMed  Google Scholar 

  38. Small GM, Burdett K, Connock MJ . A sensitive spectrophotometric assay for peroxisomal acyl-CoA oxidase Biochem J 1985 227: 205–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Flohe L, Gunzler WA . Assays of glutathione peroxidase Methods Enzymol 1984 105: 114–121

    Article  CAS  PubMed  Google Scholar 

  40. Bolann BJ, Ulvik RJ . Improvement of a direct spectrophotometric assay for routine determination of superoxide dismutase activity Clin Chem 1991 37: 1993–1999

    CAS  PubMed  Google Scholar 

  41. Bolann BJ, Tangeras A, Ulvik RJ . Determination of manganese superoxide dismutase activity by direct spectrophotometry Free Radic Res 1996 25: 541–546

    Article  CAS  PubMed  Google Scholar 

  42. Svardal AM, Mansoor MA, Ueland PM . Determination of reduced, oxidized, and protein-bound glutathione in human plasma with precolumn derivatization with monobromobimane and liquid chromatography Anal Biochem 1990 184: 338–346

    Article  CAS  PubMed  Google Scholar 

  43. Vaagenes H, Muna ZA, Madsen L, Berge RK . Low doses of eicosapentaenoic acid, docosahexaenoic acid, and hypolipidemic eicosapentaenoic acid derivatives have no effect on lipid peroxidation in plasma Lipids 1998 33: 1131–1137

    Article  CAS  PubMed  Google Scholar 

  44. Sissolak G, Hoffbrand AV, Mehta AB, Ganeshaguru K . Effects of interferon-alpha (IFN) on the expression of interleukin 1-beta (IL-1), interleukin 6 (IL-6), granulocyte–macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor-alpha (TNF) in acute myeloid leukemia (AML) blasts Leukemia 1992 6: 1155–1160

    CAS  PubMed  Google Scholar 

  45. Fiedler W, Suciu E, Wittlief C, Ostertag W, Hossfeld DK . Mechanisms of growth factor expression in acute myeloid leukemia (AML) Leukemia 1990 4: 459–461

    CAS  PubMed  Google Scholar 

  46. Frostad S, Bruserud O . In vitro effects of insulin-like growth factor-1 (IGF-1) on proliferation and constitutive cytokine secretion by acute myelogenous leukemia blasts Eur J Haematol 1999 62: 191–198

    Article  CAS  PubMed  Google Scholar 

  47. Berge RK, Madsen L, Vaagenes H, Tronstad KJ, Gottlicher M, Rustan AC . In contrast with docosahexaenoic acid, eicosapentaenoic acid and hypolipidaemic derivatives decrease hepatic synthesis and secretion of triacylglycerol by decreased diacylglycerol acyltransferase activity and stimulation of fatty acid oxidation Biochem J 1999 343: 191–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hedley DW, McCulloch EA, Minden MD, Chow S, Curtis J . Antileukemic action of buthionine sulfoximine: evidence for an intrinsic death mechanism based on oxidative stress Leukemia 1998 12: 1545–1552

    Article  CAS  PubMed  Google Scholar 

  49. Blomhoff HK, Smeland EB, Erikstein B, Rasmussen AM, Skrede B, Skjonsberg C, Blomhoff R . Vitamin A is a key regulator for cell growth, cytokine production, and differentiation in normal B cells J Biol Chem 1992 267: 23988–23992

    CAS  PubMed  Google Scholar 

  50. Rusten LS, Dybedal I, Blomhoff HK, Blomhoff R, Smeland EB, Jacobsen SE . The RAR-RXR as well as the RXR-RXR pathway is involved in signaling growth inhibition of human CD34+ erythroid progenitor cells Blood 1996 87: 1728–1736

    CAS  PubMed  Google Scholar 

  51. Smeland EB, Rusten L, Jacobsen SE, Skrede B, Blomhoff R, Wang MY, Funderud S, Kvalheim G, Blomhoff HK . All-trans retinoic acid directly inhibits granulocyte colony-stimulating factor-induced proliferation of CD34+ human hematopoietic progenitor cells Blood 1994 84: 2940–2945

    CAS  PubMed  Google Scholar 

  52. Jacobsen SE, Fahlman C, Blomhoff HK, Okkenhaug C, Rusten LS, Smeland EB . All-trans- and 9-cis-retinoic acid: potent direct inhibitors of primitive murine hematopoietic progenitors in vitro J Exp Med 1994 179: 1665–1670

    Article  CAS  PubMed  Google Scholar 

  53. Bremer J . The biochemistry of hypo- and hyperlipidemic fatty acid derivatives: metabolism and metabolic effects Prog Lipid Res 2001 40: 231–268

    Article  CAS  PubMed  Google Scholar 

  54. Berge RK, Skorve J, Tronstad KJ, Berge K, Gudbrandsen OA, Grav H . Metabolic effects of thia fatty acids Curr Opin Lipidol 2002 13: 295–304

    Article  CAS  PubMed  Google Scholar 

  55. Berge RK, Hvattum E . Impact of cytochrome P450 system on lipoprotein metabolism. Effect of abnormal fatty acids (3-thia fatty acids) Pharmacol Ther 1994 61: 345–383

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The University of Bergen, the Norwegian Research Council and the Norwegian Cancer Society supported the study. We acknowledge Laila Menzoni, Svein Kryger and Kari Williams for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tronstad, K., Bruserud, Ø., Berge, K. et al. Antiproliferative effects of a non-β-oxidizable fatty acid, tetradecylthioacetic acid, in native human acute myelogenous leukemia blast cultures. Leukemia 16, 2292–2301 (2002). https://doi.org/10.1038/sj.leu.2402698

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402698

Keywords

This article is cited by

Search

Quick links