Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Bis(1H-2-indolyl)-1-methanones as inhibitors of the hematopoietic tyrosine kinase Flt3

Abstract

Aberrant expression and activating mutations of the class III receptor tyrosine kinase Flt3 (Flk-2, STK-1) have been linked to poor prognosis in acute myeloid leukemia (AML). Inhibitors of Flt3 tyrosine kinase activity are, therefore, of interest as potential therapeutic compounds. We previously described bis(1H-2-indolyl)-1-methanones as a novel class of selective inhibitors for platelet-derived growth factor receptors (PDGFR). Several bis(1H-2-indolyl)-1-methanone derivatives, represented by the compounds D-64406 and D-65476, are also potent inhibitors of Flt3. They inhibit proliferation of TEL-Flt3-transfected BA/F3 cells with IC50 values of 0.2–0.3 μM in the absence of IL-3 but >10 μM in the presence of IL-3. Ligand-stimulated autophosphorylation of Flt3 in EOL-1 cells and corresponding downstream activation of Akt/PKB are effectively inhibited by bis(1H-2-indolyl)-1-methanones whereas autophosphorylation of c-Kit/SCF receptor or c-Fms/CSF-1 receptor is less sensitive or insensitive, respectively. Flt3 kinase purified by different methods is potently inhibited in vitro, demonstrating a direct mechanism of inhibition. 32D cells, expressing a constitutively active Flt3 variant with internal tandem duplication are greatly sensitized to radiation-induced apoptosis in the presence of D-64406 or D-65476 in the absence but not in the presence of IL-3. Thus, bis(1H-2-indolyl)-1-methanones are potential candidates for the treatment of Flt3-driven leukemias.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA . The hallmarks of cancer Cell 2000 100: 57–70

    Article  CAS  PubMed  Google Scholar 

  2. Blume-Jensen P, Hunter T . Oncogenic kinase signalling Nature 2001 411: 355–365

    CAS  PubMed  Google Scholar 

  3. Parwaresch MR, Kreipe H, Felgner J, Heidorn K, Jaquet K, Bodewadt-Radzun S, Radzun HJ . M-CSF and M-CSF-receptor gene expression in acute myelomonocytic leukemias Leukemia Res 1990 14: 27–37

    Article  CAS  Google Scholar 

  4. Pietsch T, Kyas U, Steffens U, Yakisan E, Hadam MR, Ludwig WD, Zsebo K, Welte K . Effects of human stem cell factor (c-kit ligand) on proliferation of myeloid leukemia cells: heterogeneity in response and synergy with other hematopoietic growth factors Blood 1992 80: 1199–1206

    CAS  PubMed  Google Scholar 

  5. Golub TR, Barker GF, Lovett M, Gilliland DG . Fusion of PDGF receptor beta to a novel ETS-like gene, Tel, in chronic myelomonocytic leukemia with T(512) chromosomal translocation Cell 1994 77: 307–316

    Article  CAS  PubMed  Google Scholar 

  6. Rosnet O, Birnbaum D . Hematopoietic receptors of class III receptor-type tyrosine kinases Crit Rev Oncog 1993 4: 595–613

    CAS  PubMed  Google Scholar 

  7. Hirayama F, Lyman SD, Clark SC, Ogawa M . The flt3 ligand supports proliferation of lymphohematopoietic progenitors and early B-lymphoid progenitors Blood 1995 85: 1762–1768

    CAS  PubMed  Google Scholar 

  8. Hunte BE, Hudak S, Campbell D, Xu Y, Rennick D . flk2/flt3 ligand is a potent cofactor for the growth of primitive B cell progenitors J Immunol 1996 156: 489–496

    CAS  PubMed  Google Scholar 

  9. Mackarehtschian K, Hardin JD, Moore KA, Boast S, Goff SP, Lemischka IR . Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors Immunity 1995 3: 147–161

    Article  CAS  PubMed  Google Scholar 

  10. Hannum C, Culpepper J, Campbell D, McClanahan T, Zurawski S, Bazan JF, Kastelein R, Hudak S, Wagner J, Mattson J, Luh J, Duda G, Martina N, Peterson D, Menon S, Shanafelt A, Muench M, Keiner G, Namikawa R, Rennick D, Roncarolo MG, Zlotnik A, Rosnet O, Dubreuil P, Birnbaum D, Lee F . Ligand for FLT3/FLK2 receptor tyrosine kinase regulates growth of haematopoietic stem cells and is encoded by variant RNAs Nature 1994 368: 643–648

    Article  CAS  PubMed  Google Scholar 

  11. McKenna HJ, de Vries P, Brasel K, Lyman SD, Williams DE . Effect of flt3 ligand on the ex vivo expansion of human CD34+ hematopoietic progenitor cells Blood 1995 86: 3413–3420

    CAS  PubMed  Google Scholar 

  12. Lyman SD, Jacobsen SE . c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities Blood 1998 91: 1101–1134

    CAS  PubMed  Google Scholar 

  13. Gabbianelli M, Pelosi E, Montesoro E, Valtieri M, Luchetti L, Samoggia P, Vitelli L, Barberi T, Testa U, Lyman S . Multi-level effects of flt3 ligand on human hematopoiesis: expansion of putative stem cells and proliferation of granulomonocytic progenitors/monocytic precursors Blood 1995 86: 1661–1670

    CAS  PubMed  Google Scholar 

  14. Shah AJ, Smogorzewska EM, Hannum C, Crooks GM . Flt3 ligand induces proliferation of quiescent human bone marrow CD34+CD38- cells and maintains progenitor cells in vitro Blood 1996 87: 3563–3570

    CAS  PubMed  Google Scholar 

  15. Zhang S, Mantel C, Broxmeyer HE . Flt3 signaling involves tyrosyl-phosphorylation of SHP-2 and SHIP and their association with Grb2 and Shc in Baf3/Flt3 cells J Leukoc Biol 1999 65: 372–380

    Article  CAS  PubMed  Google Scholar 

  16. Zhang S, Broxmeyer HE . p85 subunit of PI3 kinase does not bind to human Flt3 receptor, but associates with SHP2, SHIP, and a tyrosine-phosphorylated 100-kDa protein in Flt3 ligand-stimulated hematopoietic cells Biochem Biophys Res Commun 1999 254: 440–445

    Article  CAS  PubMed  Google Scholar 

  17. Carow CE, Levenstein M, Kaufmann SH, Chen J, Amin S, Rockwell P, Witte L, Borowitz MJ, Civin CI, Small D . Expression of the hematopoietic growth factor receptor FLT3 (STK- 1/Flk2) in human leukemias Gene 1996 169: 197–201

    Article  Google Scholar 

  18. Rosnet O, Buhring HJ, Marchetto S, Rappold I, Lavagna C, Sainty D, Arnoulet C, Chabannon C, Kanz L, Hannum C, Birnbaum D . Human FLT3/FLK2 receptor tyrosine kinase is expressed at the surface of normal and malignant hematopoietic cells Leukemia 1996 10: 238–248

    CAS  PubMed  Google Scholar 

  19. Turner AM, Lin NL, Issarachai S, Lyman SD, Broudy VC . FLT3 receptor expression on the surface of normal and malignant human hematopoietic cells Blood 1996 88: 3383–3390

    CAS  PubMed  Google Scholar 

  20. Hawley TS, Fong AZ, Griesser H, Lyman SD, Hawley RG . Leukemic predisposition of mice transplanted with gene-modified hematopoietic precursors expressing flt3 ligand Blood 1998 92: 2003–2011

    CAS  PubMed  Google Scholar 

  21. Kiyoi H, Towatari M, Yokota S, Hamaguchi M, Ohno R, Saito H, Naoe T . Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product Leukemia 1998 12: 1333–1337

    Article  CAS  PubMed  Google Scholar 

  22. Horiike S, Yokota S, Nakao M, Iwai T, Sasai Y, Kaneko H, Taniwaki M, Kashima K, Fujii H, Abe T, Misawa S . Tandem duplications of the FLT3 receptor gene are associated with leukemic transformation of myelodysplasia Leukemia 1997 11: 1442–1446

    Article  CAS  PubMed  Google Scholar 

  23. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K, Sonoda Y, Fujimoto T, Misawa S . Internal tandem duplication of the flt3 gene found in acute myeloid leukemia Leukemia 1996 10: 1911–1918

    CAS  PubMed  Google Scholar 

  24. Iwai T, Yokota S, Nakao M, Okamoto T, Taniwaki M, Onodera N, Watanabe A, Kikuta A, Tanaka A, Asami K, Sekine I, Mugishima H, Nishimura Y, Koizumi S, Horikoshi Y, Mimaya J, Ohta S, Nishikawa K, Iwai A, Shimokawa T, Nakayama M, Kawakami K, Gushiken T, Hyakuna N, Fujimoto T . Internal tandem duplication of the FLT3 gene and clinical evaluation in childhood acute myeloid leukemia Leukemia 1999 13: 38–43

    Article  CAS  PubMed  Google Scholar 

  25. Xu F, Taki T, Yang HW, Hanada R, Hongo T, Ohnishi H, Kobayashi M, Bessho F, Yanagisawa M, Hayashi Y . Tandem duplication of the FLT3 gene is found in acute lymphoblastic leukaemia as well as acute myeloid leukaemia but not in myelodysplastic syndrome or juvenile chronic myelogenous leukaemia in children Br J Haematol 1999 105: 155–162

    Article  CAS  PubMed  Google Scholar 

  26. Hayakawa F, Towatari M, Kiyoi H, Tanimoto M, Kitamura T, Saito H, Naoe T . Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines Oncogene 2000 19: 624–631

    Article  CAS  PubMed  Google Scholar 

  27. Mizuki M, Fenski R, Halfter H, Matsumura I, Schmidt R, Muller C, Gruning W, Kratz-Albers K, Serve S, Steur C, Buchner T, Kienast J, Kanakura Y, Berdel WE, Serve H . Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways Blood 2000 96: 3907–3914

    CAS  PubMed  Google Scholar 

  28. Tse KF, Mukherjee G, Small D . Constitutive activation of FLT3 stimulates multiple intracellular signal transducers and results in transformation Leukemia 2000 14: 1766–1776

    Article  CAS  PubMed  Google Scholar 

  29. Fenski R, Flesch K, Serve S, Mizuki M, Oelmann E, Kratz-Albers K, Kienast J, Leo R, Schwartz S, Berdel WE, Serve H . Constitutive activation of FLT3 in acute myeloid leukaemia and its consequences for growth of 32D cells Br J Haematol 2000 108: 322–330

    Article  CAS  PubMed  Google Scholar 

  30. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S, Asou N, Kuriyama K, Yagasaki F, Shimazaki C, Akiyama H, Saito K, Nishimura M, Motoji T, Shinagawa K, Takeshita A, Saito H, Ueda R, Ohno R, Naoe T . Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies Blood 2001 97: 2434–2439

    Article  CAS  PubMed  Google Scholar 

  31. Zhao M, Kiyoi H, Yamamoto Y, Ito M, Towatari M, Omura S, Kitamura T, Ueda R, Saito H, Naoe T . In vivo treatment of mutant FLT3-transformed murine leukemia with a tyrosine kinase inhibitor Leukemia 2000 14: 374–378

    Article  CAS  PubMed  Google Scholar 

  32. Tse KF, Novelli E, Civin CI, Böhmer FD, Small D . Inhibition of FLT3-mediated transformation by use of a tyrosine kinase inhibitor Leukemia 2001 15: 1001–1010

    Article  CAS  PubMed  Google Scholar 

  33. Levis M, Tse KF, Smith BD, Garrett E, Small D . A FLT3 tyrosine kinase inhibitor is selectively cytotoxic to acute myeloid leukemia blasts harboring FLT3 internal tandem duplication mutations Blood 2001 98: 885–887

    Article  CAS  PubMed  Google Scholar 

  34. Kovalenko M, Gazit A, Böhmer A, Rorsman C, Rönnstrand L, Heldin CH, Waltenberger J, Böhmer FD, Levitzki A . Selective platelet-derived growth factor receptor kinase blockers reverse sis-transformation Cancer Res 1994 54: 6106–6114

    CAS  PubMed  Google Scholar 

  35. Gazit A, App H, Mcmahon G, Chen J, Levitzki A, Böhmer FD . Tyrphostins. 5. Potent inhibitors of platelet-derived growth-factor receptor tyrosine kinase–structure–activity–relationships in quinoxalines, quinolines, and indole tyrphostins J Med Chem 1996 39: 2170–2177

    Article  CAS  PubMed  Google Scholar 

  36. Buchdunger E, Cioffi CL, Law N, Stover D, Ohno-Jones S, Druker BJ, Lydon NB . Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors J Pharmacol Exp Ther 2000 295: 139–145

    CAS  PubMed  Google Scholar 

  37. Mauro MJ, Druker BJ . STI571: targeting BCR-ABL as therapy for CML Oncologist 2001 6: 233–238

    Article  CAS  PubMed  Google Scholar 

  38. Mahboobi S, Teller S, Pongratz H, Hufsky H, Sellmer A, Botzki A, Uecker A, Beckers T, Baasner S, Schächtele C, Überall F, Kassack MU, Dove S, Böhmer FD . Bis(1H-2-indolyl)methanones as a novel class of inhibitors of the platelet-derived growth factor receptor kinase J Med Chem 2002 45: 1002–1018

    Article  CAS  PubMed  Google Scholar 

  39. Kovalenko M, Rönnstrand L, Heldin CH, Loubtchenkov M, Gazit A, Levitzki A, Böhmer FD . Phosphorylation site-specific inhibition of platelet-derived growth-factor beta-receptor autophosphorylation by the receptor blocking tyrphostin AG1296 Biochemistry 1997 36: 6260–6269

    Article  CAS  PubMed  Google Scholar 

  40. Meierhoff G, Dehmel U, Gruss HJ, Rosnet O, Birnbaum D, Quentmeier H, Dirks W, Drexler HG . Expression of FLT3 receptor and FLT3-ligand in human leukemia–lymphoma cell lines Leukemia 1995 9: 1368–1372

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was in part supported by a grant from the German Federal Ministry for education and Science (BEO 0311334 to FDB, TB and SM); a grant from Deutsche Krebshilfe, eV (10-1717-Do I to FDB and SM); from the Deutsche Forschungsgemeinschaft (Se 600/2-4) and from the IZKF and IMF Münster (to HS); and a grant from the NCI (CA70970) to DS.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teller, S., Krämer, D., Böhmer, SA. et al. Bis(1H-2-indolyl)-1-methanones as inhibitors of the hematopoietic tyrosine kinase Flt3. Leukemia 16, 1528–1534 (2002). https://doi.org/10.1038/sj.leu.2402630

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402630

Keywords

This article is cited by

Search

Quick links