Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Alterations of the cyclin D1/pRb/p16INK4A pathway in multiple myeloma

Abstract

The retinoblastoma protein (pRb), p16INK4A, D-type cyclins, and their partners cyclin-dependent kinase (CDK) 4 and 6 constitute a G1 regulatory pathway commonly targeted in tumorigenesis. Several malignancies show a reciprocal correlation between genetic alterations of single members of the pRb pathway. Therefore, we determined the frequency of Rb deletions and cyclin D1 alterations by fluorescence in situ hybridization as well as 5′ CpG island hypermethylation of the p16INK4Agene using methylation-specific polymerase chain reaction in bone marrow mononuclear cells from 82 individuals with plasma cell disorders. Alterations in at least one of the components of the pathway were found in 75%. Cyclin D1 translocations or amplifications were detected in 14/82 (17.1%), Rb deletions at 13q14 in 23/82 (28%) of the cases, including three (3.6%) homozygous deletions. p16INK4A was hypermethylated in 33/57 (57.9%) of the samples. Further analysis revealed a highly significant correlation between cyclin D1 alterations and extramedullar or leukemic myeloma manifestations (P = 0.014; Fisher's test). Whereas Rb deletions seemed to occur alternatively to cyclin D1 alterations, no reciprocal correlation was found between p16INK4A hypermethylations and cyclin D1 or Rb locus aberrations. Cyclin D1 locus alterations and Rb deletions were associated with a significantly worse prognosis whereas p16INK4A hypermethylation had no impact on survival. We conclude that cyclin D1 and Rb aberrations seem to occur as alternative events in plasma cell malignancies and contribute to clinical course and prognosis. In contrast, although p16INK4A hypermethylation is frequent, inactivation of p16INK4A seems not to be involved in the pathogenesis of plasma cell disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Kamb A . Cell-cycle regulators and cancer Trends Genet 1995 11: 136–140

    Article  CAS  PubMed  Google Scholar 

  2. Sherr CJ, Roberts JM . Inhibitors of mammalian G1 cyclin-dependent kinases Genes Dev 1995 9: 1149–1163

    Article  CAS  PubMed  Google Scholar 

  3. Strauss M, Lukas J, Bartek J . Unrestricted cell cycling and cancer Nat Med 1995 1: 1245–1246

    Article  CAS  PubMed  Google Scholar 

  4. Weinberg RA . The retinoblastoma protein and cell cycle control Cell 1995 81: 323–330

    Article  CAS  PubMed  Google Scholar 

  5. Hall M, Peters G . Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer Adv Cancer Res 1996 68: 67–108

    Article  CAS  PubMed  Google Scholar 

  6. Nevins JR . E2F, a link between the Rb tumor suppressor protein and viral oncoproteins Science 1992 258: 424–429

    Article  CAS  PubMed  Google Scholar 

  7. Krämer A, Carstens CP, Fahl WE . A novel CCAAT-binding protein necessary for adhesion-dependent cyclin A transcription at the G1/S boundary is sequestered by a retinoblastoma-like protein in G0 J Biol Chem 1996 271: 6579–6582

    Article  PubMed  Google Scholar 

  8. Krämer A, Carstens CP, Wasserman WW, Fahl WE . CBP/cycA, a CCAAT-binding protein necessary for adhesion-dependent cyclin A transcription at the G1/S boundary consists of NF-Y and a novel 115 kDa subunit Cancer Res 1997 57: 5117–5121

    PubMed  Google Scholar 

  9. Hunter T, Pines J . Cyclins and cancer II: cyclin D and CDK inhibitors come of age Cell 1994 79: 573–582

    Article  CAS  PubMed  Google Scholar 

  10. Bosch F, Jares P, Campo E, Lopez-Guillermo A, Piris MA, Villamor N, Tassies D, Jaffe ES, Monserrat E, Rozman C . Prad-1/cyclin D1 gene overexpression in chronic lymphoproliferative disorders: a highly specific marker for mantle cell lymphoma Blood 1994 84: 2726–2732

    CAS  PubMed  Google Scholar 

  11. de Boer CJ, van Krieken JHM, Kluin-Nelemans HC, Kluin PM, Schuuring E . Cyclin D1 messenger RNA overexpression as a marker for mantle cell lymphoma Oncogene 1995 10: 1833–1840

    CAS  PubMed  Google Scholar 

  12. Yatabe Y, Suzuki R, Tobinai K, Matsuno Y, Ichinohasama R, Okamoto M, Yamaguchi M, Tamaru J, Uike N, Hashimoto Y, Morishima Y, Suchi T, Seto M, Nakamura S . Significance of cyclin D1 overexpression for the diagnosis of mantle cell lymphoma: a clinicopathologic comparison of cyclin D1-positive MCL and cyclin D1-negative MCL-like B-cell lymphoma Blood 2000 95: 2253–2261

    CAS  PubMed  Google Scholar 

  13. Levy V, Ugo V, Delmer A, Tang R, Ramond S, Perrot JY, Vrhovac R, Marie JP, Zittoun R, Ajchenbaum-Cymbalista F . Cyclin D1 overexpression allows identification of an aggressive subset of leukemic lymphoproliferative disorders Leukemia 1999 13: 1343–1351

    Article  CAS  PubMed  Google Scholar 

  14. Gillett C, Fantl V, Smith R, Fisher C, Bartek J, Dickson C, Barnes D, Peters G . Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining Cancer Res 1994 54: 1812–1817

    CAS  PubMed  Google Scholar 

  15. Michalides R, van Veelen N, Hart A, Balm A . Overexpression of cyclin D1 correlates with recurrence in a group of forty-seven operable squamous cell carcinomas of the head and neck Cancer 1995 55: 975–978

    CAS  Google Scholar 

  16. Bartkova J, Lukas J, Guldberg P, Alsner J, Kirkin AF, Zeuthen J, Bartek J . The p16-cyclin D/cdk4-pRb pathway as a functional unit frequently altered in melanoma pathogenesis Cancer Res 1996 56: 5475–5483

    CAS  PubMed  Google Scholar 

  17. Wölfel T, Hauer M, Schneider J, Serrano M, Wolfel C, Klehmann-Hieb E, De Plaen E, Hankeln T, Meyer zum Buschenfelde KH, Beach D . A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma Science 1995 269: 1281–1284

    Article  PubMed  Google Scholar 

  18. He J, Olson JJ, James CD . Lack of p16INK4 or retinoblastoma protein (pRb), or amplification-associated overexpression of cdk4 is observed in distinct subsets of malignant glial tumors and cell lines Cancer Res 1995 55: 4833–4836

    CAS  PubMed  Google Scholar 

  19. Kamb A, Gruis NA, Weaver-Feldhaus J, Liu Q, Harshman K, Tavtigian SV, Stockert E, Day RS 3rd, Johnson BE, Skolnick MH . A cell cycle regulator potentially involved in genesis of many tumor types Science 1994 264: 436–440

    Article  CAS  PubMed  Google Scholar 

  20. Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA . Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers Nature 1994 368: 753–756

    Article  CAS  PubMed  Google Scholar 

  21. Hebert J, Cayuela JM, Berkeley J, Sigaux F . Candidate tumor-suppressor gene MTS1 (p16/INK4A) and MTS2 (p15/INK4B) display frequent homozygous deletions in primary cells from T- but not from B-cell lineage acute lymphoblastic leukemias Blood 1994 84: 4038–4044

    CAS  PubMed  Google Scholar 

  22. Hangaishi A, Ogawa S, Imamura N, Miyawaki S, Miura Y, Uike N, Shimazaki C, Emi N, Takeyama K, Hirosawa S, Kamada N, Kobayashi Y, Takemoto Y, Kitani T, Toyama K, Ohtake S, Yazaki Y, Ueda R, Hirai H . Inactivation of multiple tumor-suppressor genes involved in negative regulation of the cell cycle, MTS1/p16INK4A/CDKN2, MTS2/p15INK4B, p53, and Rb genes in primary lymphoid malignancies Blood 1996 87: 4949–4958

    CAS  PubMed  Google Scholar 

  23. Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB, Sidransky D . 5′CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers Nat Med 1995 1: 686–692

    Article  CAS  PubMed  Google Scholar 

  24. He J, Allen JR, Collins VP, Allalunis-Turner MJ, Godbout R, Day RS 3rd, James CD . CDK4 amplification is an alternative mechanism to p16 homozygous deletion in glioma cell lines Cancer Res 1994 54: 5804–5807

    CAS  PubMed  Google Scholar 

  25. Shapiro GI, Edwards CD, Kobzik L, Godleski J, Richards W, Sugarbaker DJ, Rollins BJ . Reciprocal Rb inactivation and the p16INK4A expression in primary lung cancers and cell lines Cancer Res 1995 55: 505–509

    CAS  PubMed  Google Scholar 

  26. Schauer IE, Siriwardana S, Langan TA, Sclafani RI . Cyclin D1 overexpression vs. retinoblastoma inactivation: implications for growth control evasion in non-small and small cell lung cancer Proc Natl Acad Sci USA 1994 91: 7827–7831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dreyling MH, Bullinger L, Ott G, Stilgenbauer S, Muller-Hermelink HK, Bentz M, Hiddemann W, Döhner H . Alterations of the cyclin D1/p16-pRB pathway in mantle cell lymphoma Cancer Res 1997 57: 4608–4614

    CAS  PubMed  Google Scholar 

  28. Jadayel DM, Lukas J, Nacheva E, Bartkova J, Stranks G, De Schouwer PJ, Lens D, Bartek J, Dyer MJ, Kruger AR, Catovsky D . Potential role for concurrent abnormalities of the cyclin D1, p16CDKN2 and p15CDKN2B genes in certain B cell non-Hodgkin's lymphomas. Functional studies in a cell line (Granta 519) Leukemia 1997 11: 64–72

    Article  CAS  PubMed  Google Scholar 

  29. Hallek M, Bergsagel PL, Anderson KC . Multiple myeloma: evidence for a multistep transformation process Blood 1998 91: 3–21

    CAS  PubMed  Google Scholar 

  30. Gould J, Alexanian R, Goodacre A, Pathak S, Hecht B, Barlogie B . Plasma cell karyotype in multiple myeloma Blood 1988 71: 453–456

    CAS  PubMed  Google Scholar 

  31. Barlogie B, Hoover R, Epstein J . Multiple myeloma – recent developments in molecular and cellular biology Curr Top Microbiol Immunol 1995 194: 37–41

    CAS  PubMed  Google Scholar 

  32. Bunn PA, Krasnow S, Makuch RW, Schlam M, Schechter G . Flow cytometric analysis of DNA content of bone marrow cells in patients with plasma cell myeloma: clinical implications Blood 1982 59: 528–535

    PubMed  Google Scholar 

  33. Drach J, Schuster J, Nowotny H, Angerler J, Rosenthal F, Fiegl M, Rothermundt C, Gsur A, Jager U, Heinz R . Multiple myeloma: high incidence of chromosomal aneuploidy as detected by interphase fluorescence in situ hybridization Cancer Res 1995 55: 3854–3859

    CAS  PubMed  Google Scholar 

  34. Weh HJ, Gutensohn K, Selbach J, Kruse R, Wacker-Backhaus G, Seeger D, Fiedler W, Fett W, Hossfeld DK . Karyotype in multiple myeloma and plasma cell leukaemia Eur J Cancer 1993 29A: 1269–1273

    Article  CAS  PubMed  Google Scholar 

  35. Tricot G, Barlogie B, Jagannath S, Bracy D, Mattox S, Vesole DH, Naucke S, Sawyer JR . Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not with other karyotype abnormalities Blood 1995 86: 4250–4256

    CAS  PubMed  Google Scholar 

  36. Pérez-Simón JA, García-Sanz R, Tabernero MD, Almeida J, Gonzalez M, Fernandez-Calvo J, Moro MJ, Hernandez JM, San Miguel JF, Orfao A . Prognostic value of numerical chromosome aberrations in multiple myeloma: a FISH analysis of 15 different chromosomes Blood 1998 91: 3366–3371

    PubMed  Google Scholar 

  37. Zojer N, Königsberg R, Ackermann J, Fritz E, Dallinger S, Kromer E, Kaufmann H, Riedl L, Gisslinger H, Schreiber S, Heinz R, Ludwig H, Huber H, Drach J . Deletion of 13q14 remains an independent adverse prognostic variable in multiple myeloma despite its frequent detection by interphase fluorescence in situ hybridization Blood 2000 95: 1925–1930

    CAS  PubMed  Google Scholar 

  38. Schultheis B, Krämer A, Willer A, Hegenbart U, Goldschmidt H, Hehlmann R . Analysis of p73 and p53 gene deletions in multiple myeloma Leukemia 1999 13: 2099–2103

    Article  CAS  PubMed  Google Scholar 

  39. Siebert R, Matthiesen P, Harder S, Zhang Y, Borowski A, Zuhlke-Jenisch R, Metzke S, Joos S, Weber-Matthiesen K, Grote W, Schlegelberger B . Application of interphase fluorescence in situ hybridization for the detection of the Burkitt translocation t(8;14)(q24;q32) in B-cell lymphomas Blood 1998 91: 984–990

    CAS  PubMed  Google Scholar 

  40. Dreyling MH, Bohlander SK, LeBeau MM, Olopade OI . Refined mapping of genomic rearrangements involving the short arm of chromosome 9 in acute lymphoblastic leukemia and other hematological malignancies Blood 1995 86: 1931–1938

    CAS  PubMed  Google Scholar 

  41. Lichter P, Cremer T . Chromosome analysis by non-isotopic in situ hybridization. In: Rooney DE, Czepulkowski BH (eds) Human Cytogenetics Oxford University Press: New York 1992 157–192

    Google Scholar 

  42. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB . Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands Proc Natl Acad Sci USA 1996 93: 9821–9826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dao DD, Sawyer JR, Epstein J, Hoover RG, Barlogie B, Tricot G . Deletion of the retinoblastoma gene in multiple myeloma Leukemia 1994 8: 1280–1284

    CAS  PubMed  Google Scholar 

  44. Juge-Morineau N, Mellerin MP, Francois S, Rapp MJ, Harousseau JL, Amiot M, Bataille R . High incidence of deletions but infrequent inactivation of the retinoblastoma gene in human myeloma cells Br J Haematol 1995 91: 664–667

    Article  CAS  PubMed  Google Scholar 

  45. Avet-Loiseau H, Li J-Y, Facon T, Brigaudeau C, Morineau N, Maloisel F, Rapp MJ, Talmant P, Trimoreau F, Jaccard A, Harousseau JL, Bataille R . High incidence of translocations t(11;14)(q13;q32) and t(4;14)(p16;q32) in patients with plasma cell malignancies Cancer Res 1998 58: 5640–5645

    CAS  PubMed  Google Scholar 

  46. Fonseca R, Witzig TE, Gertz MA, Kyle RA, Hoyer JD, Jalal SM, Greipp PR . Multiple myeloma and the translocation t(11;14)(q13;q32): a report on 13 cases Br J Haematol 1998 101: 296–301

    Article  CAS  PubMed  Google Scholar 

  47. Troussard X, Avet-Loiseau H, Macro M, Mellerin MP, Malet M, Roussel M, Sola B . Cyclin D1 expression in patients with multiple myeloma Hematology J 2000 1: 181–185

    Article  CAS  Google Scholar 

  48. Gernone A, Iolascon A, Pietrafesa A, Dammacco F . p16 gene analysis in multiple myeloma (MM) Leukemia 1996 10: 1401

    CAS  PubMed  Google Scholar 

  49. Tasaka T, Berenson J, Vescio R, Hirama T, Miller CW, Nagai M, Takahara J, Koeffler HP . Analysis of the p16INK4A, p15INK4B, and p18INK4C genes in multiple myeloma Br J Haematol 1997 96: 98–102

    Article  CAS  PubMed  Google Scholar 

  50. Dilworth D, Liu L, Stewart K, Berenson JR, Lassam N, Hogg D . Germline CDKN2A mutation implicated in predisposition to multiple myeloma Blood 2000 95: 1869–1871

    CAS  PubMed  Google Scholar 

  51. Ng MHL, Chung YF, Lo KW, Wickham NWR, Lee JCK, Huang DP . Frequent hypermethylation of the p16 and p15 genes in multiple myeloma Blood 1997 89: 2500–2506

    CAS  PubMed  Google Scholar 

  52. Tasaka T, Asou H, Munker R, Said JW, Berenson J, Vescio RA, Nagai M, Takahara J, Koeffler HP . Methylation of the p16INK4A gene in multiple myeloma Br J Haematol 1998 101: 558–564

    Article  CAS  PubMed  Google Scholar 

  53. Urashima M, Teoh G, Ogata A, Chauhan D, Treon SP, Sugimoto Y, Kaihara C, Matsuzaki M, Hoshi Y, DeCaprio JA, Anderson KC . Characterization of p16INK4A expression in multiple myeloma and plasma cell leukemia Clin Cancer Res 1997 3: 2173–2179

    CAS  PubMed  Google Scholar 

  54. Uchida T, Kinoshita T, Ohno T, Ohashi H, Nagai H, Saito H . Hypermethylation of the p16INK4A gene promoter during the progression of plasma cell dyscrasia Leukemia 2001 15: 157–165

    Article  CAS  PubMed  Google Scholar 

  55. Akiyama N, Tsuruta H, Sasaki H, Sakamoto H, Hamaguchi M, Ohmura Y, Seto M, Ueda R, Hirai H, Yazaki Y . Messenger RNA levels of five genes located at chromosome 11q13 in B-cell tumors with chromosome translocation t(11;14)(q13;q32) Cancer Res 1994 54: 377–379

    CAS  PubMed  Google Scholar 

  56. Shaughnessy J, Tian E, Sawyer J, Bumm K, Landes R, Badros A, Morris C, Tricot G, Epstein J, Barlogie B . High incidence of chromosome 13 deletion in multiple myeloma detected by mutliprobe interphase FISH Blood 2000 96: 1505–1511

    CAS  PubMed  Google Scholar 

  57. Corcoran MM, Rasool O, Liu Y, Iyengar A, Grander D, Ibbotson RE, Merup M, Wu X, Brodyansky V, Gardiner AC, Juliusson G, Chapman RM, Ivanova G, Tiller M, Gahrton G, Yankovsky N, Zabarovsky E, Oscier DG, Einhorn S . Detailed molecular delineation of 13q14.3 loss in B-cell chronic lymphocytic leukemia Blood 1998 91: 1382–1390

    CAS  PubMed  Google Scholar 

  58. Shaughnessy J Jr, Gabrea A, Qi Y, Brents L, Zhan F, Tian E, Sawyer J, Barlogie B, Bergsagel PL, Kuehl M . Cyclin D3 at 6p21 is dysregulated by recurrent chromosomal translocations to immunoglobulin loci in multiple myeloma Blood 2001 98: 217–223

    Article  CAS  PubMed  Google Scholar 

  59. Lovec H, Grzeschiczek A, Kowalski MB, Möröy T . Cyclin D1/bcl-1 cooperates with the myc genes in the generation of B-cell lymphoma in transgenic mice EMBO J 1994 13: 3487–3495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bodrug SE, Warner BJ, Bath ML, Lindemann GJ, Harris AW . Cyclin D1 transgene impedes lymphocyte maturation and collaborates in lymphogenesis with the myc gene EMBO J 1994 13: 2124–2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lukas J, Aagaard L, Strauss M, Bartek J . Oncogenic aberrations of p16INK4/CDKN2 and cyclin D1 cooperate to deregulate G1 control Cancer Res 1995 55: 4818–4823

    CAS  PubMed  Google Scholar 

  62. Zhang T, Nanney LB, Luongo C, Lamps L, Heppner KJ, DuBois RN, Beauchamp RD . Concurrent overexpression of cyclin D1 and cyclin-dependent kinase 4 (Cdk4) in intestinal adenomas from multiple intestinal neoplasia (Min) mice and human familial adenomatous polyposis patients Cancer Res 1997 57: 169–175

    CAS  PubMed  Google Scholar 

  63. Stock W, Tsai T, Golden C, Rankin C, Sher D, Slovak ML, Pallavicini MG, Radich JP, Boldt DH . Cell cycle regulatory gene abnormalities are important determinants of leukemogenesis and disease biology in adult acute lymphoblastic leukemia Blood 2000 95: 2364–2371

    CAS  PubMed  Google Scholar 

  64. Kees UR, Burton PR, Lü C, Baker DL . Homozygous deletion of the p16/MTS1 gene in pediatric acute lymphoblastic leukemia is associated with unfavorable clinical outcome Blood 1997 89: 4161–4166

    CAS  PubMed  Google Scholar 

  65. Semenov, Akyuz C, Roginskaya V, Chanhan D, Corey SJ . Growth inhibition and apoptosis of myeloma cells by the CDK inhibitor flavopiridol Leuk Res 2002 26: 271–280

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Stefan Bohlander, Institute of Human Genetics, University of Göttingen, Germany and Dr Rainer Siebert, Department of Human Genetics, University of Kiel, Germany for kindly providing the cosmids spanning the 14q32 IgH region and the 9p21 p16INK4A/p15INK4B region, respectively. We thank Dr Axel Benner, Department of Biomedical Statistics, German Cancer Research Center, Heidelberg, Germany for help with the statistical analysis. This work was supported by the Deutsche Krebshilfe and the Forschungsfonds, Fakultät für Klinische Medizin Mannheim, Universität Heidelberg, Germany.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krämer, A., Schultheis, B., Bergmann, J. et al. Alterations of the cyclin D1/pRb/p16INK4A pathway in multiple myeloma. Leukemia 16, 1844–1851 (2002). https://doi.org/10.1038/sj.leu.2402609

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402609

Keywords

This article is cited by

Search

Quick links