Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

F-MuLV acceleration of myelomonocytic tumorigenesis in SV40 large T antigen transgenic mice is accompanied by retroviral insertion at Fli1 and a novel locus, Fim4

Abstract

We describe here the development of a murine system for the identification of genes involved in myelomonocytic neoplasms. Transgenic C57BL/6J mice expressing SV40 early region under a myelomonocytic promoter develop histiocytic sarcomas with a latency of 167 days. We used retroviral proviral tagging to accelerate tumorigenesis and to uncover genetic changes that contribute to tumor development. Infection of transgenic mice with Friend murine leukemia virus (F-MuLV) shortened the latency of morbidity to 103 days (P< 0.001); this was associated with clonal proviral integrations in tumor DNA. As expected for F-MuLV, proviral insertions occurred at Fli1 in both transgenic and nontransgenic tumors. Four insertions were found at a novel locus, termed Fim4, on chromosome 6. This region is syntenic to human 7q32, a region that is commonly deleted in human myelodysplastic syndrome and acute myeloid leukemia. A murine BAC containing Fim4 was sequenced and analyzed, and while there was significant human–mouse homology in the area of the insertions, no candidate gene has been identified. Thus we have established a system to identify genes involved in myelomonocytic tumors, and have used it to identify Fim4, a new common site of proviral insertion. Study of this locus may provide insight into genes involved in AML-associated 7q32 deletions in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Lane D, Crawford L . T-antigen is bound to host protein in SV40-transformed cells Nature 1979 278: 261–263

    Article  CAS  PubMed  Google Scholar 

  2. Ludlow J, DeCaprio J, Huang C-M, Lee WH, Paucha E, Livingston DM . SV40 large T antigen binds preferentially to an underphosphorylated member of the retinoblastoma susceptibility gene product family Cell 1989 56: 57–65

    Article  CAS  PubMed  Google Scholar 

  3. Zalvide J, DeCaprio J . Role of pRb-related proteins in simian virus 40 large-T-antigen-mediated transformation Mol Cell Biol 1995 15: 5800–5810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ko LJ, Prives C . p53: puzzle and paradigm Genes Dev 1996 10: 1054–1072

    Article  CAS  PubMed  Google Scholar 

  5. Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB . Wild-type p53 is a cell cycle checkpoint determinant following irradiation Proc Natl Acad Sci USA 1992 89: 7491–7495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yonish-Rouach E, Grunwald D, Wilder S, Kimichi S, May E, Lawrence J, May P, Oren M . p53-mediated cell death: relationship to cell cycle control Mol Cell Biol 1993 13: 1415–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Symonds H, Krall L, Remington L, Saenz-Robles M, Lowe S, Jacks T, Van Dyke T . p53-dependent apoptosis suppresses tumor growth and progression in vivo Cell 1994 78: 703–711

    Article  CAS  PubMed  Google Scholar 

  8. Skalnik DG, Dorfman DM, Perkins AS, Jenkins NA, Copeland NG, Orkin SH . Targeting of transgene expression to monocyte/macrophages by the gp91-phox promoter and consequent histiocytic malignancies Proc Natl Acad Sci USA 1991 88: 8505–8509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Skalnik DG, Dorfman DM, Williams DA, Orkin SH . Restriction of neuroblastoma to the prostate in transgenic mice Mol Cell Biol 1991 11: 4518–4527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li J, Shen H, Himmel K, Dupuy A, Largaespada D, Nakamura T, Shaughnessy J Jr, Jenkins N, Copeland N . Leukaemia disease genes: large-scale cloning and pathway predictions Nat Genet 1999 23: 348–353

    Article  CAS  PubMed  Google Scholar 

  11. Kung HJ, Boerkoel C, Carter TH . Retroviral mutagenesis of cellular oncogenes: a review with insights into the mechanisms of insertional activation Curr Topics Microbiol Immunol 1991 171: 1–25

    CAS  Google Scholar 

  12. Nusse R . Insertional mutagenesis in mouse mammary tumorigenesis Curr Topics Microbiol Immunol 1991 171: 44–65

    Google Scholar 

  13. Ben-David Y, Bernstein A . Friend virus-induced erythroleukemia and the multistage nature of cancer Cell 1991 66: 831–834

    Article  CAS  PubMed  Google Scholar 

  14. Ceci J, Kovatch R, Swing D, Jones J, Snow C, Rosenberg M, Jenkins N, Copeland N, Meisler M . Transgenic mice carrying a murine amylase 2.2/SV40 T antigen fusion gene develop pancreatic acinar cell and stomach carcinomas Oncogene 1991 6: 323–332

    CAS  PubMed  Google Scholar 

  15. Oliff A, Ruscetti S, Douglass EC, Scolnick E . Isolation of transplantable erythroleukemia cells from mice infected with helper-independent Friend murine leukemia virus Blood 1981 58: 244–254

    CAS  PubMed  Google Scholar 

  16. Cepko C . Retrovirus infection of cells in vitro and in vivo In: Ausubel F, Brent R, Kingston R, Moore D, Seidman J, Smith J, Struhl K (eds) Current Protocols in Molecular Biology Greene Publishing Associates and John Wiley and Sons: New York 1993 9.14.11–19.14.13

    Google Scholar 

  17. Jenkins N, Copeland N, Taylor B, Lee B . Organization, distribution, and stability of endogenous ecotropic murine leukemia virus DNA sequences in chromosomes of Mus musculus J Virol 1982 43: 26–36

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bergeron D, Poliquin L, Houde J, Barbeau B, Rassart E . Analysis of proviruses integrated in Fli-1 and Evi-1 regions in Cas-Br-E MuLV-induced non-T-, non-B-cell leukemias Virology 1992 191: 661–669

    Article  CAS  PubMed  Google Scholar 

  19. Feinberg A, Vogelstein B . A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity Anal Biochem 1983 132: 6–13

    Article  CAS  PubMed  Google Scholar 

  20. Church G, Gilbert W . Genomic sequencing Proc Natl Acad Sci USA 1984 81: 1991–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sambrook J, Fritsch E, Maniatis T . Molecular Cloning, A Laboratory Manual, 2nd edn Cold Spring Harbor Laboratory Press: Cold Spring Harbor 1989

    Google Scholar 

  22. Pan HQ, Wang YP, Chissoe SL, Bodenteich A, Wang Z, Iyer K, Clifton SW, Crabtree JS, Roe BA . The complete nucleotide sequences of the SacBII Kan domain of the P1 pAD10-SacBII cloning vector and three cosmid cloning vectors: pTCF, svPHEP, and LAWRIST16 Genet Anal Tech Appl 1994 11: 181–186

    Article  CAS  PubMed  Google Scholar 

  23. Bodenteich A, Chissoe S, Wang YF, Roe BA . Shotgun cloning as the strategy of choice to generate yemplates for high-throughput dideoxynucleotide sequencing. In: Venter JC (ed.) Automated DNA Sequencing and Analysis Techniques Academic Press: London 1993 42–50

    Google Scholar 

  24. Chissoe SL, Bodenteich A, Wang YF, Wang YP, Burian D, Clifton SW, Crabtree J, Freeman A, Iyer K, Jian L . Sequence and analysis of the human ABL gene, the BCR gene, and regions involved in the Philadelphia chromosomal translocation Genomics 1995 27: 67–82

    Article  CAS  PubMed  Google Scholar 

  25. Ewing B, Hillier L, Wendl MC, Green P . Base-calling of automated sequencer traces using phred. I. Accuracy assessment Genome Res 1998 8: 175–185

    Article  CAS  PubMed  Google Scholar 

  26. Ewing B, Green P . Base-calling of automated sequencer traces using phred. II. Error probabilities Genome Res 1998 8: 186–194

    Article  CAS  PubMed  Google Scholar 

  27. Gordon D, Abajian C, Green P . Consed: a graphical tool for sequence finishing Genome Res 1998 8: 195–202

    Article  CAS  PubMed  Google Scholar 

  28. Altschul S, Gish W, Miller W, Myers E, Lipman D . Basic local alignment search tool J Mol Biol 1990 215: 402–410

    Article  Google Scholar 

  29. Worley KC, Wiese BA, Smith RF . BEAUTY: an enhanced BLAST-based search tool that integrates multiple biological information resources into sequence similarity search results Genome Res 1995 5: 173–184

    Article  CAS  PubMed  Google Scholar 

  30. Henikoff S, Henikoff JG . Protein family classification based on searching a database of blocks Genomics 1994 19: 97–107

    Article  CAS  PubMed  Google Scholar 

  31. Florea L, Riemer C, Schwartz S, Zhang Z, Stojanovic N, Miller W, McClelland M . Web-based visualization tools for bacterial genome alignments Nucleic Acids Res 2000 28: 3486–3496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sonnhammer EL, Durbin R . A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis Gene 1995 167: GC1–10

    Article  CAS  PubMed  Google Scholar 

  33. Reid T, Baldini A, Rand T, Ward D . Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy Proc Natl Acad Sci USA 1992 89: 1388–1392

    Article  Google Scholar 

  34. Nimmakayalu M, Henegariu O, Ward D, Bray-Ward P . Simple method for preparation of Fluor/Hapten labeled dUTP Biotechniques 2000 28: 518–522

    Article  CAS  PubMed  Google Scholar 

  35. Silver JE, Fredrickson TN . A new gene that controls the type of leukemia induced by Friend murine leukemia virus J Exp Med 1983 158: 493–505

    Article  CAS  PubMed  Google Scholar 

  36. Lavigueur A, Bernstein A . p53 transgenic mice: accelerated erythroleukemia induction by Friend virus Oncogene 1991 6: 2197–2201

    CAS  PubMed  Google Scholar 

  37. Bergeron D, Poliquin L, Kozak C, Rassart E . Identification of a common viral integration region in Cas-Br-E murine leukemia virus-induced non-T-, non-B-cell lymphomas J Virol 1991 65: 7–15

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bergeron D, Houde J, Poliquin L, Barbeau B, Rassart E . Expression and DNA rearrangement of proto-oncogenes in Cas-Br-E-induced non-T-, non-B-cell leukemias Leukemia 1993 7: 954–962

    CAS  PubMed  Google Scholar 

  39. Hansen G, Skapura D, Justice M . Genetic profile of insertion mutations in mouse leukemias and lymphomas Genome Res 2000 10: 237–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bedigian H, Johnson D, Jenkins N, Copeland N, Evans R . Spontaneous and induced leukemias of myeloid origin in recombinant inbred BXH mice J Virol 1984 51: 586–594

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Silver J, Fredrickson T . Susceptibility to Friend helper virus leukemias in CXB recombinant inbred mice J Exp Med 1983 158: 1693–1702

    Article  CAS  PubMed  Google Scholar 

  42. Lien L, Lee Y, Orkin S . Regulation of the myeloid-cell-expressed human gp91-phox gene as studied by transfer of yeast artificial chromosome clones into embryonic stem cells: suppression of a variegated cellular pattern of expression requires a full complement of distant cis elements Mol Cell Biol 1997 17: 2279–2290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Le Beau M, Espinosa R, Davis E, Eisenbart J, Larson R, Green E . Cytogenetic and molecular delineation of a region of chromosome 7 commonly deleted in malignant myeloid diseases Blood 1996 88: 1930–1935

    CAS  PubMed  Google Scholar 

  44. Liang H, Fairman J, Claxton D, Nowell P, Green E, Nagarajan L . Molecular anatomy of chromosome 7q deletions in myeloid neoplasms: evidence for multiple critical loci Proc Natl Acad Sci USA 1998 95: 3781–3785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Koike M, Tasaka T, Spira S, Tsuruoka N, Koeffler H . Allelotyping of acute myelogenous leukemia: loss of heterozygosity at 7q31.1 (D7S486) and q33–34 (D7S498, D7S505) Leukemia Res 1999 23: 307–310

    Article  CAS  Google Scholar 

  46. Kiuru-Kuhlefelt, Kristo P, Ruutu T, Knuutila S, Kere J . Evidence for two molecular steps in the pathogenesis of myeloid disorders associated with deletion of chromosome 7 long arm Leukemia 1997 11: 2097–2104

    Article  CAS  PubMed  Google Scholar 

  47. Kere J, Ruutu T, Kavies K, Roninson I, Watkins P, Winqvist R, de la Chapelle A . Chromosome 7 long arm deletion in myeloid disorders; a narrow breakpoint region in 7q22 defined by molecular mapping Blood 1989 73: 230–234

    CAS  PubMed  Google Scholar 

  48. Tosi S, Scherer S, Giudici G, Czepulkowski B, Biondi A, Kearney L . Delineation of multiple deleted regions in 7q in myeloid disorders Genes Chromosomes Cancer 1999 25: 384–392

    Article  CAS  PubMed  Google Scholar 

  49. Zenklusen J, Conti C, Green E . Mutational and functional analyses reveal that ST7 is a highly conserved tumor-suppressor gene on human chromosome 7q31 Nat Genet 2001 27: 392–398

    Article  CAS  PubMed  Google Scholar 

  50. Buchberg AM, Bedigian HG, Jenkins NA, Copeland NG . Evi-2, a common integration site involved in murine myeloid leukemogenesis Mol Cell Biol 1990 10: 4658–4666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Viskochil D, Buchberg A, Xu G, Cawthon R, Stevens J, Wolff R, Culver M, Carey J, Copeland N, Jenkins N, White R, O'Connell P . Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type1 locus Cell 1990 62: 187–192

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was performed with a grant from the American Cancer Society to ASP (No. DB93–074). We thank David Skalnik for providing the gp91phox–SV40 early region transgene construct, Daniel Gien, Valerie Green, William Chen, Linda Cleveland, Janet Grubber, and Bryn Eagleson for technical assistance, and Robert M Kovatch for pathologic diagnosis. We also thank Sandra Ruscetti for supplying the F-MuLV env probe, Sandy Morse for providing the IgH probe, and Eric Rassart for providing the Fli1 probe. We also thank JoAnn Falato for secretarial support.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kone, J., Arroyo, J., Savinelli, T. et al. F-MuLV acceleration of myelomonocytic tumorigenesis in SV40 large T antigen transgenic mice is accompanied by retroviral insertion at Fli1 and a novel locus, Fim4. Leukemia 16, 1827–1834 (2002). https://doi.org/10.1038/sj.leu.2402598

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402598

Keywords

This article is cited by

Search

Quick links