Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

The coexpression of the apoptosis-related genes bcl-2 and wt1 in predicting survival in adult acute myeloid leukemia

Abstract

The Wilms tumor gene wt1 and the protooncogene bcl-2 are upregulated in acute myeloid leukemia (AML) and are known to regulate or to inhibit the onset of apoptosis. Since wt1 has been shown to regulate the expression of bcl-2, we investigated the association of the expression of these genes and their prognostic relevance in AML. Leukemic blasts from the bone marrow of 152 patients with newly diagnosed AML were analyzed for bcl-2 and wt1 mRNA expression using RT-PCR and quantitative PCR. Therapy outcome was correlated with the level of bcl-2 and wt1 transcripts. Bcl-2-specific mRNA was detectable in 127/152 (84%) patients and wt1 mRNA in 113/152 (74%) patients with AML. In monocytic subtypes the frequency of bcl-2 and wt1 transcripts was significantly lower. The expression of bcl-2 mRNA was correlated significantly with that of wt1 mRNA (P < 0.0001). In AML patients <60 years, high expression of bcl-2 and wt1 was associated with a reduced rate of continuing complete remission (CCR, P = 0.002 and P = 0.005, respectively) and increased death rate (P = 0.0002 and P = 0.04, respectively) in contrast to patients >60 years, where the expression of bcl-2 or wt1 had no prognostic impact. Based on the coexpression of bcl-2 and wt1, we established a prognostic model defining three risk groups with significant differences in CCR rate (P = 0.01), overall survival (P < 0.04) and disease-free survival (P < 0.03). Thus, bcl-2 and wt1 mRNA expression are associated with response and long-term outcome in AMLs. The coexpression of these genes allows determination of prognostic groups with high predictive value for overall and disease-free survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Call KM, Glaser T, Ito CY, Buckler AJ, Pelletier J, Haber DA, Rose EA, Kral A, Yeger H, Lewis WH . Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus Cell 1990 60: 509–520

    Article  CAS  PubMed  Google Scholar 

  2. Gessler M, Poustka A, Cavenee W, Neve RL, Orkin SH, Bruns GA . Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping Nature 1990 343: 774–778

    Article  CAS  PubMed  Google Scholar 

  3. Pritchard-Jones K, Fleming S, Davidson D, Bickmore W, Porteous D, Gosden C, Bard J, Buckler A, Pelletier J, Housman D . The candidate Wilms’ tumour gene is involved in genitourinary development Nature 1990 346: 194–197

    Article  CAS  PubMed  Google Scholar 

  4. Reddy JC, Licht JD . The WT1 Wilms’ tumor suppressor gene: how much do we really know? Biochim Biophys Acta 1996 1287: 1–28

    PubMed  Google Scholar 

  5. Hirose M . The role of Wilms’ tumor genes J Med Invest 1999 46: 130–140

    CAS  PubMed  Google Scholar 

  6. Haber DA, Sohn RL, Buckler AJ, Pelletier J, Call KM, Housman DE . Alternative splicing and genomic structure of the Wilms tumor gene WT1 Proc Natl Acad Sci USA 1991 88: 9618–9622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reddy JC, Morris JC, Wang J, English MA, Haber DA, Shi Y, Licht JD . WT1-mediated transcriptional activation is inhibited by dominant negative mutant proteins J Biol Chem 1995 270: 10878–10884

    Article  CAS  PubMed  Google Scholar 

  8. Kim J, Prawitt D, Bardeesy N, Torban E, Vicaner C, Goodyer P, Zabel B, Pelletier J . The Wilms’ tumor suppressor gene (wt1) product regulates Dax-1 gene expression during gonadal differentiation Mol Cell Biol 1999 19: 2289–2299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hosono S, Gross I, English MA, Haira KM, Fearon ER, Licht JD . E-cadherin Is a WT1 Target Gene J Biol Chem 2000 275: 10943–10953

    Article  CAS  PubMed  Google Scholar 

  10. Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R . WT-1 is required for early kidney development Cell 1993 74: 679–691

    Article  CAS  PubMed  Google Scholar 

  11. Maheswaran S, Englert C, Bennett P, Heinrich G, Haber DA . The WT1 gene product stabilizes p53 and inhibits p53-mediated apoptosis Genes Dev 1995 9: 2143–2156

    Article  CAS  PubMed  Google Scholar 

  12. Amin KM, Litzky LA, Smythe WR, Mooney AM, Morris JM, Mews DJ, Pass HI, Kari C, Rodeck U, Rauscher FJ . Wilms’ tumor 1 susceptibility (WT1) gene product are selectively expressed in malignant mesothelioma Am J Pathol 1995 146: 344–356

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Pritchard-Jones K, King-Underwood L . The Wilms tumour gene WT1 in leukaemia Leuk Lymphoma 1997 27: 207–220

    Article  CAS  PubMed  Google Scholar 

  14. Miwa H, Beran M, Saunders GF . Expression of the Wilms’ tumor gene (WT1) in human leukemias Leukemia 1992 6: 405–409

    CAS  PubMed  Google Scholar 

  15. Brieger J, Weidmann E, Fenchel K, Mitrou PS, Hoelzer D, Bergmann L . The expression of the Wilms’ tumor gene in acute myelocytic leukemias as a possible marker for leukemic blast cells Leukemia 1994 8: 2138–2143

    CAS  PubMed  Google Scholar 

  16. Brieger J, Weidmann E, Maurer U, Hoelzer D, Mitrou PS, Bergmann L . The Wilms’ tumor gene is frequently expressed in acute myeloblastic leukemias and may provide a marker for residual blast cells detectable by PCR Ann Oncol 1995 6: 811–816

    Article  CAS  PubMed  Google Scholar 

  17. Phelan SA, Lindberg C, Call KM . Wilms’ tumor gene, WT1, mRNA is down-regulated during induction of erythroid and megakaryocytic differentiation of K562 cells Cell Growth Differ 1994 5: 677–686

    CAS  PubMed  Google Scholar 

  18. Maurer U, Brieger J, Weidmann E, Mitrou PS, Hoelzer D, Bergmann L . The Wilms’ tumor gene is expressed in a subset of CD34+ progenitors and downregulated early in the course of differentiation in vitro Exp Hematol 1997 25: 945–950

    CAS  PubMed  Google Scholar 

  19. Sekiya M, Adachi M, Hinoda Y, Imai K, Yachi A . Downregulation of Wilms’ tumor gene (wt1) during myelomonocytic differentiation in HL60 cells Blood 1994 83: 1876–1882

    CAS  PubMed  Google Scholar 

  20. Bergmann L, Miething C, Maurer U, Brieger J, Karakas T, Weidmann E, Hoelzer D . High levels of Wilms’ tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome Blood 1997 90: 1217–1225

    CAS  PubMed  Google Scholar 

  21. Inoue K, Sugiyama H, Ogawa H, Nakagawa M, Yamagami T, Miwa H, Kita K, Hiraoka A, Masaoka T, Nasu K . WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia Blood 1994 84: 3071–3079

    CAS  PubMed  Google Scholar 

  22. Algar EM, Khromykh T, Smith SI, Blackburn DM, Bryson GJ, Smith PJ . A WT1 antisense oligonucleotide inhibits proliferation and induces apoptosis in myeloid leukaemia cell lines Oncogene 1996 12: 1005–1014

    CAS  PubMed  Google Scholar 

  23. Yamagami T, Sugiyama H, Inoue K, Ogawa H, Tatekawa T, Hirata M, Kudoh T, Akiyama T, Murakami A, Maekawa T . Growth inhibition of human leukemic cells by WT1 (Wilms tumor gene) antisense oligodeoxynucleotides: implications for the involvement of WT1 in leukemogenesis Blood 1996 87: 2878–2884

    CAS  PubMed  Google Scholar 

  24. Maurer U, Weidmann E, Karakas T, Hoelzer D, Bergmann L . Wilms tumor gene (wt1) mRNA is equally expressed in blast cells from acute myeloid leukemia and normal CD34+ progenitors (letter) Blood 1997 90: 4230–4232

    CAS  PubMed  Google Scholar 

  25. Mayo MW, Wang CY, Drouin SS, Madrid LV, Marshall AF, Reed JC, Weissman BE, Baldwin AS . WT1 modulates apoptosis by transcriptionally upregulating the bcl-2 proto-oncogene EMBO J 1999 18: 3990–4003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Klampfer L, Zhang J, Zelenetz AO, Uchida H, Nimer SD . The AML1/ETO fusion protein activates transcription of BCL-2 Proc Natl Acad Sci USA 1996 93: 14059–14064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Russell NH, Hunter AE, Bradbury D, Zhu YM, Keith F . Biological features of leukaemic cells associated with autonomous growth and reduced survival in acute myeloblastic leukaemia Leuk Lymphoma 1995 16: 223–229

    Article  CAS  PubMed  Google Scholar 

  28. Maung ZT, MacLean FR, Reid MM, Pearson AD, Proctor SJ, Hamilton PJ, Hall AG . The relationship between bcl-2 expression and response to chemotherapy in acute leukaemia Br J Haematol 1994 88: 105–109

    Article  CAS  PubMed  Google Scholar 

  29. Karakas T, Maurer U, Weidmann E, Miething CC, Hoelzer D, Bergmann L . High expression of bcl-2 mRNA as a determinant of poor prognosis in acute myeloid leukemia (see comments) Ann Oncol 1998 9: 159–165

    Article  CAS  PubMed  Google Scholar 

  30. Bensi L, Longo R, Vecchi A, Messora C, Garagnani L, Bernardi S, Tamassia MG, Sacchi S . Bcl-2 oncoprotein expression in acute myeloid leukemia Haematologica 1995 80: 98–102

    CAS  PubMed  Google Scholar 

  31. Campos L, Rouault JP, Sabido O, Oriol P, Roubi N, Vasselon C, Archimbaud E, Magaud JP, Guyotat D . High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy Blood 1993 81: 3091–3096

    CAS  PubMed  Google Scholar 

  32. Keith FJ, Bradbury DA, Zhu YM, Russell NH . Inhibition of bcl-2 with antisense oligonucleotides induces apoptosis and increases the sensitivity of AML blasts to Ara-C Leukemia 1995 9: 131–138

    CAS  PubMed  Google Scholar 

  33. Hu ZB, Yang GS, Li M, Miyamoto N, Minden MD, McCulloch EA . Mechanism of cytosine arabinoside toxicity to the blast cells of acute myeloblastic leukemia: involvement of free radicals Leukemia 1995 9: 789–798

    CAS  PubMed  Google Scholar 

  34. Lotem J, Sachs L . Control of sensitivity to induction of apoptosis in myeloid leukemic cells by differentiation and bcl-2 dependent and independent pathways Cell Growth Differ 1994 5: 321–327

    CAS  PubMed  Google Scholar 

  35. Miyashita T, Reed JC . Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line Blood 1993 81: 151–157

    CAS  PubMed  Google Scholar 

  36. Campos L, Sabido O, Rouault JP, Guyotat D . Effects of BCL-2 antisense oligodeoxynucleotides on in vitro proliferation and survival of normal marrow progenitors and leukemic cells Blood 1994 84: 595–600

    CAS  PubMed  Google Scholar 

  37. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, Sultan C . Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French–American–British Cooperative Group Ann Intern Med 1985 103: 620–625

    Article  CAS  PubMed  Google Scholar 

  38. Seipelt G, Hofmann WK, Martin H, Wassmann B, Boehme A, Ottmann OG, Hoelzer D . Comparison of toxicity and outcome in patients with acute myeloid leukemia treated with high-dose cytosine arabinoside consolidation after induction with a regimen containing idarubicin or daunorubicin Ann Hematol 1998 76: 145–151

    Article  CAS  PubMed  Google Scholar 

  39. Chomczynski P, Sacchi N . Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction Anal Biochem 1987 162: 156–159

    Article  CAS  PubMed  Google Scholar 

  40. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA . Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase Science 1988 239: 487–491

    Article  CAS  PubMed  Google Scholar 

  41. Becker-Andre M, Hahlbrock K . Absolute mRNA quantification using the polymerase chain reaction (PCR). A novel approach by a PCR aided transcript titration assay (PATTY) Nucleic Acids Res 1989 17: 9437–9446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Southern EM . Detection of specific sequence among DNA fragments separated by gel electrophoresis J Mol Biol 1975 98: 503–517

    Article  CAS  PubMed  Google Scholar 

  43. Schmid D, Heinze G, Linnerth B, Tisljar K, Kusec R, Geissler K, Sillaber C, Laczika K, Mitterbauer M, Zochbauer S, Mannhalter C, Haas OA, Lechner K, Jager U, Gaiger A . Prognostic significance of WT1 gene expression at diagnosis in adult de novo acute myeloid leukemia Leukemia 1997 11: 639–643

    Article  CAS  PubMed  Google Scholar 

  44. Lepelley P, Soenen V, Preudhomme C, Merlat A, Cosson A, Fenaux P . bcl-2 expression in myelodysplastic syndromes and its correlation with hematological features, p53 mutations and prognosis Leukemia 1995 9: 726–730

    CAS  PubMed  Google Scholar 

  45. Tamaki H, Ogawa H, Ohyashiki K, Ohyashiki JH, Iwama H, Inoue K, Soma T, Oka Y, Tatekawa T, Oji Y, Tsuboi A, Kim EH, Kawakami M, Fuchigami K, Tomonaga M, Toyama K, Aozasa K, Kishimoto T, Sugiyama H . The Wilms’ tumor gene WT1 is a good marker for diagnosis of disease progression of myelodysplastic syndromes Leukemia 1999 13: 393–399

    Article  CAS  PubMed  Google Scholar 

  46. Patmasiriwat P, Fraizer G, Kantarjian H, Saunders GF . WT1 and GATA1 expression in myelodysplastic syndrome and acute leukemia Leukemia 1999 13: 891–900

    Article  CAS  PubMed  Google Scholar 

  47. Hirose M, Kuroda Y . p53 may mediate the mdr-1 expression via the WT1 gene in human vincristine-resistant leukemia/lymphoma cell lines Cancer Lett 1998 129: 165–171

    Article  CAS  PubMed  Google Scholar 

  48. Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC . Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo Oncogene 1994 9: 1799–1805

    CAS  PubMed  Google Scholar 

  49. Ferrara F, Mirto S, Zagonel V, Pinto A . Acute myeloid leukemia in the elderly: a critical review of therapeutic approaches and appraisal of results of therapy Leuk Lymphoma 1998 29: 375–382

    Article  CAS  PubMed  Google Scholar 

  50. Porwit-MacDonald A, Ivory K, Wilkinson S, Wheatley K, Wong L, Janossy G . Bcl-2 protein expression in normal human bone marrow precursors and in acute myelogenous leukemia Leukemia 1995 9: 1191–1198

    CAS  PubMed  Google Scholar 

  51. Tamaki H, Ogawa H, Inoue K, Soma T, Yamagami T, Miyake S, Oka Y, Oji Y, Tatekawa T, Tsuboi A, Tagawa S, Kitani T, Aozasa K, Kishimoto T, Sugiyama H, Miwa H, Kita K . Increased expression of the Wilms tumor gene (WT1) at relapse in acute leukemia (letter) Blood 1996 88: 4396–4398

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the excellent technical support of Mrs Susanne Christ and Mr Bernd Schneider. Supported by the Adolf Messer Stiftung, Bad Homburg, Germany.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karakas, T., Miething, C., Maurer, U. et al. The coexpression of the apoptosis-related genes bcl-2 and wt1 in predicting survival in adult acute myeloid leukemia. Leukemia 16, 846–854 (2002). https://doi.org/10.1038/sj.leu.2402434

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402434

Keywords

This article is cited by

Search

Quick links