Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight
  • Published:

Spotlight on Molecular Targeted Therapy

Identification of novel targets for cancer therapy using expression proteomics

Abstract

Although most drugs target proteins, the proteome has remained largely untapped for the discovery of drug targets. The sequencing of the human genome has had a tremendous impact on proteomics and has provided a framework for protein identification. There is currently substantial interest in implementing proteomics platforms for drug target discovery. Although the field is still in the early stages, current proteomic tools include a variety of technologies that could be implemented for large-scale protein expression analysis of cells and tissues, leading to discovery of novel drug targets. Proteomics uniquely allows delineation of global changes in protein expression patterns resulting from transcriptional and post-transcriptional control, post-translational modifications and shifts in proteins between different cellular compartments. Some of the current technologies for proteome profiling and the application of proteomics to the analysis of leukemias by our group are reviewed.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Hanash SM . Biomedical applications of two-dimensional electrophoresis using immobilized pH gradients: current status Electrophoresis 2000 21: 1202–1209

    Article  CAS  PubMed  Google Scholar 

  2. Patterson S . Mass spectrometry and proteomics Physiol Genom 2000 2: 59–65

    Article  CAS  Google Scholar 

  3. Bjellqvist B, Ek K, Righetti PG, Gianazza E, Görg A, Westermeier R, Postel W . Isoelectric focusing in immobilized pH gradients: principle, methodology, and some applications J Biochem Biophys Meth 1982 6: 317–339

    Article  CAS  PubMed  Google Scholar 

  4. Strahler JR, Hanash SM, Somerlot L, Görg A, Weser J, Postel W . High resolution two-dimensional polyacrylamide gel electrophoresis of basic polypeptides: use of immobilized pH gradients in the first dimension Electrophoresis 1987 8: 165–173

    Article  CAS  Google Scholar 

  5. Slamon DJ, Leyland JB, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L . Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2 N Engl J Med 2001 344: 783–792

    Article  CAS  PubMed  Google Scholar 

  6. Raymond E, Faivre S, Armand JP . Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy Drugs 2000 60 (Suppl. 1): 15–23

    Article  Google Scholar 

  7. Santoni V, Kieffer S, Desclaux D, Masson F, Rabilloud T . Membrane proteomics: use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties Electrophoresis 2000 21: 3329–3344

    Article  CAS  PubMed  Google Scholar 

  8. von Haller P, Donohoe S, Goodlett D, Aebersold R, Watts J . Mass spectrometric characterization of proteins extracted from jurkat T cell detergent-resistant membrane domains Proteomics 2001 1: p 1010–1021

    Article  CAS  PubMed  Google Scholar 

  9. Stoeckli M, Chaurand P, Hallahan D, Caprioli R . Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues Nat Med 2001 7: 493–496

    Article  CAS  PubMed  Google Scholar 

  10. Bussow K, Cahill D, Nietfeld W, Bancroft D, Scherzinger E, Lehrach H, Walter G . A method for global protein expression and antibody screening on high-density filters of an arrayed cDNA library Nucleic Acids Res 1998 26: 5007–5008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lueking A, Horn M, Eickhoff H, Bussow K, Lehrach H, Walter G . Protein microarrays for gene expression and antibody screening Anal Biochem 1999 270: 103–111

    Article  CAS  PubMed  Google Scholar 

  12. Zhu H, Klemic JF, Chang S, Bertone P, Casamayor A, Klemic KG, Smith D, Gerstein M, Reed MA, Snyder M . Analysis of yeast protein kinases using protein chips Nat Genet 2000 26: 283–289

    Article  CAS  PubMed  Google Scholar 

  13. DeWildt R, Mundy C, Gorick B, Tomlinson I . Antibody arrays for high-throughtput screening of antibody-antigen interactions Nat Biotechnol 2001 18: 989–994

    Article  Google Scholar 

  14. Ge H . UPA, a universal protein array system for quantitative detection of protein–protein, protein–DNA, protein–RNA, and protein–ligand interactions Nucleic Acids Res 2000 28: e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rowe CA, Scruggs SB, Feldstein MJ, Golden JP, Ligler FS . An array immunosensor for simultaneous detection of clinical analytes Anal Biochem 1999 71: 433–439

    CAS  Google Scholar 

  16. Mendoza LG, McQuary P, Mongan A, Gangadharan R, Brignac S, Eggers M . High-throughput microarray-based enzyme-linked immunosorbent assay (ELISA) Biotechniques 1999 27: 778–780, 782–786, 788

    Article  CAS  PubMed  Google Scholar 

  17. Silzel JW, Cercek B, Dodson C, Tsay T, Obremski RJ . Mass-sensing multianalyte microarray immunoassay with imaging detection Clin Chem 1998 44: 2036–2043

    CAS  PubMed  Google Scholar 

  18. Arenkov P, Kukhtin A, Gemmell A, Voloshchuk S, Chupeeva V, Mirzabekov A . Protein microchips: use for immunoassay and enzymatic reactions Anal Biochem 2000 278: 123–131

    Article  CAS  PubMed  Google Scholar 

  19. Haab BB, Dunham MJ, Brown PO . Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions Genome Biol 2001 2: 0004.1–0004.13

    Article  Google Scholar 

  20. MacBeath G, Schreiber SL . Printing proteins as microarrays for high-throughput function determination Science 2000 289: 1760–1763

    CAS  PubMed  Google Scholar 

  21. Schweitzer B, Wiltshire S, Lambert J, O'Malley S, Kukanskis K, Zhu Z, Kingsmore SF, Lizardi PM, Ward DC . Inaugural article: immunoassays with rolling circle DNA amplification: a versatile platform for ultrasensitive antigen detection Proc Natl Acad Sci USA 2000 97: 10113–10119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP . Tissue microarrays for high-throughput molecular profiling of tumor specimens Nat Med 1998 4: 844–847

    Article  CAS  PubMed  Google Scholar 

  23. Kallioniemi OP, Wagner U, Kononen J, Sauter G . Tissue microarray technology for high-throughput molecular profiling of cancer Hum Molec Genet 2001 10: 657–662

    Article  CAS  PubMed  Google Scholar 

  24. Paweletz CP, Charboneau L, Bichsel VE, Simone NL, Chen T, Gillespie JW, Emmert-Buck MR, Roth MJ, Petricoin EF III, Liotta LA . Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front Oncogene 2001 20: 1981–1989

    Article  CAS  PubMed  Google Scholar 

  25. Madoz-Gurpide J, Wang H, Misek D, Hanash S . Protein-based microarrays: a tool for probing the proteome of cancer cells and tissues Proteomics 2001 1: 1279–1287

    Article  CAS  PubMed  Google Scholar 

  26. Schena M, Shalon D, Heller R, Chai A, Brown PO . Quantitative monitoring of gene expression patterns with a complementary microarray Science 1995 270: 467–470

    Article  CAS  PubMed  Google Scholar 

  27. DeRisi J, Penland L, Brown PO, Bittner ML, Meltzer PS, Ray M, Chen Y, Su YA, Trent JM . Use of a cDNA microarray to analyse gene expression patterns in human cancer Nat Genet 1996 14: 367–370

    Article  Google Scholar 

  28. Madoz-Gurpide J, Abad JM, Fernandez-Recio J, Velez M, Vazquez L, Gomez-Moreno C, Fernandez VM . Modulation of electroenzymatic NADPH oxidation through oriented immobilization of ferredoxin: NADP(+) reductase onto modified gold electrodes J Am Chem Soc 2000 122: 9808–9817

    Article  CAS  Google Scholar 

  29. Delamarche E, Sundarababu G, Biebuyck H, Michel B, Gerber C, Sigrist H, Wolf H, Ringsdorf H, Xanthopoulos N, Mathieu HJ . Immobilization of antibodies on a photoactive self-assembled monolayer on gold Langmuir 1996 12: 1997–2006

    Article  CAS  Google Scholar 

  30. Muller W, Ringsdorf H, Rump E, Wildburg G, Zhang X, Angermaier L, Knoll W, Liley M, Spinke J . Attempts to mimic docking processes of the immune system: recognition-induced formation of protein multilayers Science 1993 262: 1706–1708

    Article  CAS  PubMed  Google Scholar 

  31. Hanash SM, Baier LJ, McCurry L, Schwartz S . Lineage related polypeptide markers in acute lymphoblastic leukemia detected by two-dimensional electrophoresis Proc Natl Acad Sci USA 1986 83: 807–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hanash SM, Baier LJ, Neel JV, Niezgoda W . Genetic analysis of thirty three platelet polypeptides detected in two-dimensional polyacrylamide gels Am J Hum Genet 1986 38: 352–360

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Reaman G, Zeltzer P, Bleyer WA, Amendola B, Level C, Sather H, Hammond D . Acute lymphoblastic leukemia in infants less than one year of age: a cumulative experience of the Children's Cancer Study Group J Clin Oncol 1985 3: 1513–1521

    Article  CAS  PubMed  Google Scholar 

  34. Crist W, Pullen J, Boyett J, Falletta J, van Eys J, Borowitz M, Jackson J, Dowell B, Frankel L, Quddus F, Ragab A, Vietti T . Clinical and biologic features predict a poor prognosis in acute lymphoid leukemias in infants: a Pediatric Oncology Group study Blood 1986 67: 135–140

    CAS  PubMed  Google Scholar 

  35. Hanash SM, Kuick R, Strahler JR, Richardson BC, Reaman G, Stoolman L, Hanson C, Nichols D, Tueche J . Identification of a cellular polypeptide that distinguishes between acute lymphoblastic leukemia in infants and in older children Blood 1989 73: 527–532

    CAS  PubMed  Google Scholar 

  36. Strahler JR, Kuick R, Eckerskorn C, Lottspeich F, Richardson BC, Fox DA, Stoolman LM, Hanson CA, Nichols D, Tueche HJ, Hanash SM . Identification of two related markers for common acute lymphoblastic leukemia as heat shock proteins J Clin Invest 1990 85: 200–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Voss T, Ahorn H, Haberl P, Dohner H, Wilgenbus K . Correlation of clinical data with proteomics profiles in 24 patients with B-cell chronic lymphocytic leukemia Int J Cancer 2001 91: 180–186

    Article  CAS  PubMed  Google Scholar 

  38. Zhu XX, Kozarsky K, Strahler JR, Eckerskorn C, Lottspeich F, Melhem R, Lowe J, Fox DA, Hanash SM, Atweh GF . Molecular cloning of a novel human leukemia associated gene: evidence of conservation in animal species J Biol Chem 1989 264: 14556–14560

    CAS  PubMed  Google Scholar 

  39. Metz CE, Herman BA, Shen J . Maximum likelihood estimation of receiver operating characteristics (ROC) curves from continuously distributed data Stat Med 1998 24: 467–478

    Google Scholar 

  40. Melhem RF, Zhu XX, Hailat N, Strahler J, Hanash SM . Characterization of the gene for a proliferation related phosphoprotein (Op18) expressed in high amounts in acute leukemia J Biol Chem 1991 266: 17747–17753

    CAS  PubMed  Google Scholar 

  41. Hailat N, Strahler J, Melhem R, Zhu X-X, Brodeur G, Seeger RC, Reynolds CP, Hanash SM . N-myc gene amplification in neuroblastoma is associated with altered phosphorylation of a proliferation related polypeptide (Op18) Oncogene 1990 5: 1615–1618

    CAS  PubMed  Google Scholar 

  42. Melhem R, Hailat N, Kuick R, Hanash SM . Quantitative analysis of Op18 phosphorylation in childhood acute leukemia Leukemia 1997 11: 1690–1695

    Article  CAS  PubMed  Google Scholar 

  43. Belmont LD, Mitchison TJ . Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules Cell 1996 84: 623–631

    Article  CAS  PubMed  Google Scholar 

  44. Jourdain L, Curmi P, Sobel A, Pantaloni D, Carlier MF . Stathmin: a tubulin-sequencing protein which forms a ternary T2S complex with two tubulin molecules Biochem 1997 36: 10817–10821

    Article  CAS  Google Scholar 

  45. Larsson N, Marklund U, Gradin HM, Brattsand G, Gullberg M . Control of microtubule dynamics by oncoprotein 18: dissection of the regulatory role of multisite phosphorylation during mitosis Mol Cell Biochem 1997 17: 5530–5539

    Article  CAS  Google Scholar 

  46. Horwitz SB, Shen HJ, He L, Dittmar P, Neef R, Chen J, Schubart UK . The microtubule-destabilizing activity of metablastin (p19) is controlled by phosphorylation J Biol Chem 1997 272: 8129–8132

    Article  CAS  PubMed  Google Scholar 

  47. Rowlands DC, Williams A, Jones NA, Guest SS, Reynolds GM, Barber PC, Brown G . Stathmin expression is a feature of proliferating cells of most if not all cell lineages Lab Invest 1995 72: 100–113

    CAS  PubMed  Google Scholar 

  48. Cooper HL, McDuffie E, Braverman R . Human peripheral lymphocyte growth regulation and response to phorbol esters is linked to synthesis and phosphorylation of the cytosolic protein prosolin J Immunol 1989 143: 956–963

    CAS  PubMed  Google Scholar 

  49. Strahler JR, Lamb BJ, Ungar DR, Fox DA, Hanash SM . Cell cycle progression is associated with distinct patterns of phosphorylation of Op18 Biochem Biophys Res Commun 1992 185: 197–203

    Article  CAS  PubMed  Google Scholar 

  50. Strahler JR, Hailat N, Lamb BJ, Rogers KP, Underhill JA, Melhem RF, Keim DR, Zhu X-X, Kuick RD, Fox DA, Hanash SM . Activation of resting peripheral blood lymphocytes through the T cell receptor induces rapid phosphorylation of Op18 J Immunol 1992 149: 1191–1198

    CAS  PubMed  Google Scholar 

  51. Gavet O, Ozon S, Manceau V, Lawler S, Curmi P, Sobel A . The stathmin phosphoprotein family: intracellular localization and effects on the microtubule network J Cell Sci 1998 111: 3333–3346

    CAS  PubMed  Google Scholar 

  52. Beretta L, Dobránsky T, Sobel A . Multiple phosphorylation of stathmin. Identification of four sites phosphorylated in intact cells and in vitro by cyclic AMP-dependent protein kinase and p34cdc2 J Biol Chem 1993 268: 20076–20084

    CAS  PubMed  Google Scholar 

  53. Larsson N, Melander H, Marklund U, Osterman Ö, Gullberg M . G2/M transition requires multisite phosphorylation of oncoprotein 18 by two distinct protein kinase systems J Biol Chem 1995 23: 14175–14183

    Article  Google Scholar 

  54. Marklund U, Brattsand G, Shingler V, Gullberg M . Serine 25 of oncoprotein 18 is a major cytosolic target for the mitogen-activated protein kinase J Biol Chem 1993 268: 15039–15047

    CAS  PubMed  Google Scholar 

  55. Marklund U, Larsson N, Brattsand G, Osterman O, Chatila TA, Gullberg M . Serine 16 of oncoprotein 18 is a major cytosolic target for the Ca2+/calmodulin-dependent kinase-Gr Eur J Biochem 1994 225: 53–60

    Article  CAS  PubMed  Google Scholar 

  56. Curmi PA, Maucuer A, Asselin S, Lecourtois M, Chaffotte A, Schmitter JM, Sobel A . Molecular characterization of human stathmin expressed in Escherichia coli: site-directed mutagenesis of two phosphorylatable serines (Ser-25 and Ser-63) Biochem J 1994 300: 331–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sobel A . Stathmin: a relay phosphoprotein for multiple signal transduction? Trends Biochem Sci 1991 16: 301–305

    Article  CAS  PubMed  Google Scholar 

  58. Marklund U, Larsson N, Gradin HM, Brattsand G, Gullberg M . Oncoprotein 18 is a phosphorylation-responsive regulator of microtubule dynamics EMBO J 1996 15: 5290–5298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hanash SM, Strahler JR, Kuick R, Chu EHY, Nichols D . Identification of a polypeptide associated with the malignant phenotype in acute leukemia J Biol Chem 1988 263: 12813–12815

    CAS  PubMed  Google Scholar 

  60. Roos G, Brattsand G, Landberg G, Marklund U, Gullberg M . Expression of oncoprotein 18 in human leukemias and lymphomas Leukemia 1993 7: 1538–1546

    CAS  PubMed  Google Scholar 

  61. Brattsand G, Roos G, Marklund U, Ueda H, Landberg G, Nanberg E, Sideras P, Gullberg M . Quantitative analysis of the expression and regulation of an activation-regulated phosphoprotein (oncoprotein 18) in normal and neoplastic cells Leukemia 1993 7: 569–579

    CAS  PubMed  Google Scholar 

  62. Curmi PA, Nogues C, Lachkar S, Carelle N, Gonthier MP, Sobel A, Lidereau R, Bieche I . Overexpression of stathmin in breast carcinomas points out to highly proliferative tumours Br J Cancer 2000 82: 42–50

    Article  Google Scholar 

  63. Misek D, Chang C, Kuick R, Hinderer R, Giordano T, Beer D, Hanash S . Oncogenic mutation of the microtubule regulator Op18 J Biol Chem 2001 (submitted)

  64. Melhem RF, Strahler JR, Hailat N, Zhu XX, Hanash SM . Involvement of Op18 in cell proliferation Biochem Biophys Res Commun 1991 179: 1649–1655

    Article  CAS  PubMed  Google Scholar 

  65. Jeha S, Luo X-N, Beran M, Kantarjian H, Atweh GF . Antisense RNA inhibition of phosphoprotein p18 expression abrogates the transformed phenotype of leukemic cells Cancer Res 1996 56: 1445–1450

    CAS  PubMed  Google Scholar 

  66. Nishio K, Nakamura T, Koh Y, Kanzawa F, Tamura T, Saijo N . Oncoprotein 18 overexpression increases the sensitivity to vindesine in the human lung carcinoma cells Cancer 2001 91: 1491–1499

    Article  Google Scholar 

  67. Mistry S, Atweh G . Stathmin inhibition enhances okadaic acid-induced mitotic arrest. A potential role for stathmin in mitotic exit J Biol Chem 2001 276: 31209–31215

    Article  CAS  PubMed  Google Scholar 

  68. Packer N . Post-translational modifications Proteomics 2001 1: 167–364

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanash, S., Madoz-Gurpide, J. & Misek, D. Identification of novel targets for cancer therapy using expression proteomics. Leukemia 16, 478–485 (2002). https://doi.org/10.1038/sj.leu.2402412

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402412

Keywords

This article is cited by

Search

Quick links