Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Early increase in DcR2 expression and late activation of caspases in the platelet storage lesion

Abstract

Platelet transfusion is widely used to prevent bleeding in patients with severe thrombocytopenia. The maximal storage duration of platelet concentrates is usually 5 days, due to the platelet storage lesion that impairs their functions when stored for longer times. Some of the morphological and biochemical changes that characterize this storage lesion are reminiscent of cell death by apoptosis. The present study analyzed whether proteins involved in nucleated cell apoptosis could play a role in the platelet storage lesion. Storage of leukocyte-depleted platelets obtained by apheresis is associated with a late and limited activation of caspases, mainly caspase-3. This event correlates with an increased expression of the pro-apoptotic BH3-only protein Bim in the particulate fraction and a slight and late release of the pro-apoptotic mitochondrial protein Diablo/Smac in the cytosol. Platelets do not express the death receptors Fas, DR4 and DR5 on their plasma membrane, while the expression of the decoy receptor DcR2 increases progressively during platelet storage. Addition of low concentrations of the cryoprotector dimethylsulfoxide accelerates platelet caspase activation during storage, an effect that is partially prevented by the caspase inhibitor z-VAD-fmk. Altogether, DcR2 expression on the plasma membrane is an early event while caspase activation is a late event during platelet storage. These observations suggest that caspases are unlikely to account for the platelet storage lesion. As a consequence, addition of caspase inhibitors may not improve the quality of platelet concentrates stored in standard conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Fijnheer R, Pietersz RN, de Korte D, Gouwerok CW, Dekker WJ, Reesink HW, Roos D . Platelet activation during preparation of platelet concentrates: a comparison of the platelet-rich plasma and the buffy coat methods Transfusion 1990 30: 634–638

    CAS  PubMed  Google Scholar 

  2. Engelfriet CP, Reesink HW . The official requirements for platelet concentrates Vox Sang 1998 75: 308–317

    CAS  PubMed  Google Scholar 

  3. Seghatchian J, Krailadsiri P . The platelet storage lesion Transfus Med Rev 1997 11: 130–144

    CAS  PubMed  Google Scholar 

  4. Bode AP . Platelet activation may explain the storage lesion in platelet concentrates Blood Cells 1990 16: 109–126

    CAS  PubMed  Google Scholar 

  5. Rinder HM, Murphy M, Mitchell JG, Stocks J, Ault KA, Hillman RS . Progressive platelet activation with storage: evidence for shortened survival of activated platelets after transfusion Transfusion 1991 31: 409–414

    CAS  PubMed  Google Scholar 

  6. Nieuwenhuis HK, von Oosterhout JJ, Rozemuller E, van Iwaarden F, Sixma JJ . Studies with a monoclonal antibody against activated platelets: evidence that a secreted 53:000-molecular weight lysosome-like granule protein is exposed on the surface of activated platelets in the circulation Blood 1987 70: 838–845

    CAS  PubMed  Google Scholar 

  7. Gearing AJ, Newman W . Circulating adhesion molecules in disease Immunol Today 1993 14: 506–512

    CAS  PubMed  Google Scholar 

  8. Solum NO . Procoagulant expression in platelets and defects leading to clinical disorders Arterioscler Thromb Vasc Biol 1999 19: 2841–2846

    CAS  PubMed  Google Scholar 

  9. Vanags DM, Orrenius S, Aguilar-Santelises M . Alterations in Bcl-2/Bax protein levels in platelets form part of an ionomycin-induced process that resembles apoptosis Br J Haematol 1997 99: 824–831

    CAS  PubMed  Google Scholar 

  10. Pan G, Humke EW, Dixit VM . Activation of caspases triggered by cytochrome c in vitro FEBS Lett 1998 426: 151–154

    CAS  PubMed  Google Scholar 

  11. Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES, Green DR, Martin SJ . Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner J Cell Biol 1999 144: 281–292

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G . Molecular characterization of mitochondrial apoptosis-inducing factor Nature 1999 397: 441–446

    CAS  PubMed  Google Scholar 

  13. Du C, Fang M, Li Y, Li L, Wang X . Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition Cell 2000 102: 33–42

    CAS  PubMed  Google Scholar 

  14. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL . Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins Cell 2000 102: 43–53

    CAS  PubMed  Google Scholar 

  15. Hu Y, Benedict MA, Ding L, Nunez G . Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis EMBO J 1999 18: 3586–3595

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bodmer JL, Holler N, Reynard S, Vinciguerra P, Schneider P, Juo P, Blenis J, Tschopp J . TRAIL receptor-2 signals apoptosis through FADD and caspase-8 Nat Cell Biol 2000 2: 241–243

    CAS  PubMed  Google Scholar 

  17. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME . Two CD95 (APO/Fas) signalling pathways EMBO J 1998 17: 1675–1687

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Salvesen GS, Dixit VM . Caspases: intracellular signalling by proteolysis Cell 1997 91: 443–446

    CAS  PubMed  Google Scholar 

  19. Alnemri ES . Mammalian cell death proteases: a family of highly conserved aspartate specific cysteine proteases J Cell Biochem 1997 64: 33–42

    CAS  PubMed  Google Scholar 

  20. Vanags DM, Pörn-Ares MI, Coppola S, Burgess DH, Orrenius S . Protease involvement in fodrin cleavage and phosphatidylserine exposure in apoptosis J Biol Chem 1996 271: 31075–31085

    CAS  PubMed  Google Scholar 

  21. Shcherbina A, Remold-O'Donnell E . Role of caspase in a subset of human platelet activation responses Blood 1999 12: 4222–4231

    Google Scholar 

  22. Wolf BB, Goldstein JC, Stennicke HR, Beere H, Amarante-Mendes GP, Salvesen GS, Green DR . Calpain functions in a caspase-independent manner to promote apoptosis-like events during platelet activation Blood 1999 94: 1683–1692

    CAS  PubMed  Google Scholar 

  23. Jacobson MD, Burne JF, Raff MC . Programmed cell death and Bcl-2 protection in the absence of a nucleus EMBO J 1994 13: 1899–1910

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Shulze-Osthoff K, Walczak H, Dröge W, Krammer PH . Cell nucleus and DNA fragmentation are not required for apoposis J Cell Biol 1994 127: 15–20

    Google Scholar 

  25. Frangioni JV, Oda A, Smith M, Salzman EW, Neel BG . Calpain-catalyzed cleavage and subcellular relocation of protein phosphotyrosine phosphatase 1B (PTP-1B) in human platelets EMBO J 1993 12: 4843–4856

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Li J, Xia Y, Bertino AM, Coburn JP, Kuter DJ . The mechanism of apoptosis in human platelets during storage Transfusion 2000 40: 1320–1329

    CAS  PubMed  Google Scholar 

  27. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Brenner C, Larochette N, Prevost MC, Alzari PM, Kroemer G . Mitochon drial release of caspase-2 and -9 during the apoptotic process J Exp Med 1999 189: 381–393

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhivotovsky B, Samali A, Gahm A, Orrenius S . Caspases: their intracellular localization and translocation during apoptosis Cell Death Differ 1999 6: 644–651

    CAS  PubMed  Google Scholar 

  29. Michelson AD . Flow cytometry: a clinical test of platelet function Blood 1996 87: 4925–4936

    CAS  PubMed  Google Scholar 

  30. Fabretti F, Tazzari PL, Musiani D, Bontadini A, Matteini C, Roseti L, Tassi C, Viggiani M, Marini M, Conte R . White cell apoptosis in platelet concentrates Transfusion 2000 40: 160–168

    Google Scholar 

  31. Sevlever D, Pickett S, Mann KJ, Sambumurti K, Med of ME, Rosenberry TL . Glycosylphosphatidylinositol-anchor intermediates associate with triton-soluble membranes in subcellular compartments that include the endoplasmatic reticulum Biochem J 1999 343: 627–635

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Matthew G, Heiden V, Thompson CB . Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nat Cell Biol 1999 1: 209–216

    Google Scholar 

  33. Huang DCS, Strasser A . BH3-only proteins – essential initiators of apoptotic cell death Cell 2000 103: 839–842

    CAS  PubMed  Google Scholar 

  34. Brown SB, Clarke MC, Magowan L, Sanderson H, Savill J . Constitutive death of platelets leading to scavenger receptor-mediated phagocytosis J Biol Chem 2000 275: 5987–5996

    CAS  PubMed  Google Scholar 

  35. Solary E, Droin N, Bettaieb A, Corcos L, Dimanche-Boitrel MT, Garrido C . Positive and negative regulation of apoptotic pathways by cytotoxic agents in hematological malignancies Leukemia 2000 14: 1833–1849

    CAS  PubMed  Google Scholar 

  36. Holme S, Bode A, Heaton WA, Sawyer S . Improved maintenance of platelet in vivo viability during storage when using a synthetic medium with inhibitors J Lab Clin Med 1992 119: 144–150

    CAS  PubMed  Google Scholar 

  37. Qin H, Srinivasula SM, Wu G, Fernandes-Alnemri T, Alnemri ES, Shi Y . Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1 Nature 1999 399: 549–557

    CAS  PubMed  Google Scholar 

  38. Li H, Zhu H, Xu CJ, Yuan J . Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis Cell 1998 94: 491–501

    CAS  PubMed  Google Scholar 

  39. Droin N, Bichat F, Rébé C, Wotawa A, Sordet O, Hammann A, Bertrand R, Solary E . Involvement of capase-2 long isoform in Fas-mediated cell death of human leukemic cells Blood 2001 97: 1835–1844

    CAS  PubMed  Google Scholar 

  40. Kaufmann SH, Desnoyers S, Ottavio Y, Davidson NE, Poirier GG . Specific proteolytic cleavage of poly (ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis Cancer Res 1993 53: 3976–3985

    CAS  PubMed  Google Scholar 

  41. Chandler JM, Cohen GM, MacFarlane M . Different subcellular distribution of caspase-3 and caspase-7 following Fas-induced apoptosis in mouse liver J Biol Chem 1998 273: 10815–10818

    CAS  PubMed  Google Scholar 

  42. Martin SJ, O'Brein GA, Nishioka WK, McGahon AJ, Mahboubi A, Saido TC, Green DR . Proteolysis of fodrin (non-erythroid spectrin) during apoptosis J Biol Chem 1995 270: 6425–6428

    CAS  PubMed  Google Scholar 

  43. Kishimoto A, Mikawa K, Hashimoto K, Yasuda I, Tanaka S, Tominaga M, Kuroda T, Nishizuka Y . Limited proteolysis of protein kinase C subspecies by calcium-dependent neutral protease (calpain) J Biol Chem 1989 264: 4088–4092

    CAS  PubMed  Google Scholar 

  44. O'Connor L, Strasser A, O'Reilly LA, Hausmann G, Adams JM, Cory S, Huang DC . Bim: a novel member of the Bcl-2 family that promotes apoptosis EMBO J 1998 17: 384–395

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Puthalakath H, Huang DC, O'Reilly LA, King SM, Strasser A . The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with dynein motor complex Mol Cell 1999 3: 287–296

    CAS  PubMed  Google Scholar 

  46. Bouillet P, Metcalf D, Huang DC, Tarlinton DM, Kay TW, Kontgen F, Adams JM, Strasser A . Proapoptotic Bcl-2 relative Bim is required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity Science 1999 286: 1735–1738

    CAS  PubMed  Google Scholar 

  47. De Maria R, Zeuner A, Eramo A, Domenichelli C, Bonci D, Grignani F, Srinivasula SM, Alnemri ES, Testa U, Peschle C . Negative regulation of erythropoiesis by caspase-mediated cleavage of GATA-1 Nature 1999 401: 489–493

    CAS  PubMed  Google Scholar 

  48. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A . Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family J Biol Chem 1996 271: 12687–12690

    CAS  PubMed  Google Scholar 

  49. Bonavida B, Ng CP, Jazirehi A, Schiller G, Mizutani Y . Selectivity of TRAIL-mediated apoptosis of cancer cells and synergy with drugs: the TRAIL to non-toxic cancer therapeutics Int J Oncol 1999 15: 793–802

    CAS  PubMed  Google Scholar 

  50. Pan G, O'Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J, Dixit VM . The receptor for the cytotoxic ligang TRAIL Science 1997 276: 111–113

    CAS  PubMed  Google Scholar 

  51. Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D, Ramakrishnan L, Gray CL, Baker K, Wood WI, Goddard AD, Godowski P, Ashkenazi A . Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors Science 1997 277: 818–820

    CAS  PubMed  Google Scholar 

  52. Pan G, Ni J, Wei YF, Yu GL, Gentz R, Dixit VM . An antagonist decoy receptor and a death domain-containing receptor for TRAIL Science 1997 277: 815–818

    CAS  PubMed  Google Scholar 

  53. Marsters SA, Sheridan JP, Pitti RM, Huang A, Skubatch M, Baldwin D, Yuan J, Gurney A, Goddard AD, Godowski P, Ashkenazi A . A novel receptor for Apo2L/TRAIL contains a truncated death domain Curr Biol 1997 7: 1003–1006

    CAS  PubMed  Google Scholar 

  54. Schneider P, Bodmer JL, Thome M, Hofmann K, Holler N, Tschopp J . Characterization of two receptors for TRAIL FEBS Lett 1997 416: 329–334

    CAS  PubMed  Google Scholar 

  55. Lacour S, Hammam A, Wotawa A, Corcos L, Solary E, Dimanche-Boitrel MT . Anticancer agents sensitize tumor cells to TRAIL-mediated caspase-8 activation and apoptosis Cancer Res 2001 61: 1645–1651

    CAS  PubMed  Google Scholar 

  56. Nicholson DW . From bench to clinic with apoptosis-based therapeutic agents Nature 2000 407: 810–816

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Association pour la Recherche en Transfusion. The group is also labeled ‘La Ligue’ by the Ligue Nationale Contre le Cancer. We thank Dr Jean-Pierre Cazenave (INSERM U311, Strasbourg, France) for helpful advices during the course of the study and Dr Kubin, Dr Yagita and Dr Wang for providing Abs.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plenchette, S., Moutet, M., Benguella, M. et al. Early increase in DcR2 expression and late activation of caspases in the platelet storage lesion. Leukemia 15, 1572–1581 (2001). https://doi.org/10.1038/sj.leu.2402231

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402231

Keywords

This article is cited by

Search

Quick links