Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Prognostic evaluation of the microvascular network in myelodysplastic syndromes

Abstract

Considering the recently stated suggestion of neovascularization being implicated in myelodysplastic syndromes (MDS) pathogenesis, we evaluated multiple morphometric microvascular characteristics in MDS, in relation to clinicopathologic factors and prognosis. Trephines from 50 newly diagnosed MDS patients were immunostained for factor VIII and compared to those from 20 controls, 10 chronic myelomonocytic leukemia (CMML) and 12 acute myeloid leukemia (AML) patients. Quantitation of microvessel density (MVD), area, total vascular area (TVA), major and minor axis length, perimeter, compactness, shape factor, Feret diameter, and the number of branching vessels was performed by image analysis. Overall, the MDS group had significantly higher MVD, TVA, minor axis and shape factor values and significantly lower compactness than the control group. AML was characterized by increased vascularity compared to MDS and CMML, as well as by the presence of flattened microvessels (lower values of shape factor). Hypercellular MDS showed higher MVD. RA/RARS displayed larger caliber vessels than RAEB, which explains the favorable prognostic effect of increased size-related parameters on progression and/or survival. Moreover, decreased compactness and MVD were independent predictors of longer progression-free survival. It is concluded that angiogenesis is involved in the conversion of normal marrow to MDS and ultimately to AML and that disease progression within MDS is accompanied by qualitative alterations of the microvascular network. Furthermore, size-related parameters affect survival, while shape-related parameters and MVD are more influential with regard to progression-free survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Folkman J, Shing Y . Angiogenesis J Biol Chem 1992 267: 10931–10934

    CAS  PubMed  Google Scholar 

  2. Folkman J . Clinical applications of research on angiogenesis N Engl J Med 1995 333: 1757–1763

    Article  CAS  Google Scholar 

  3. Hanahan D, Folkman J . Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis (review) Cell 1996 86: 353–364

    Article  CAS  Google Scholar 

  4. Schnitt SJ . The real value of angiogenesis research in breast cancer Adv Anat Path 1997 4: 23–27

    Article  Google Scholar 

  5. Srivastava A, Laidler P, Davies RP, Horgan K, Hughes LE . The prognostic significance of tumor vascularity in intermediate-thickness (0.76–4.0 mm thick) skin melanoma: a quantitative histologic study Am J Pathol 1988 133: 419–423

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bochner BH, Cote RJ, Weidner N, Groshen S, Chen S-C, Skinner DG, Nichols PW . Angiogenesis in bladder cancer: relationship between microvessel density and tumor prognosis J Natl Cancer Inst 1995 87: 1603–1612

    Article  CAS  Google Scholar 

  7. Brawer MK, Deering RE, Brown M, Preston SD, Bigler SA . Predictors of pathologic stage in prostatic carcinoma. The role of neovascularity Cancer 1994 73: 678–687

    Article  CAS  Google Scholar 

  8. Pavlopoulos PM, Konstantinidou AE, Agapitos E, Kavantzas N, Nikolopoulou P, Davaris P . A morphometric study of neovascularization in colorectal carcinoma Cancer 1998 83: 2067–2075

    Article  CAS  Google Scholar 

  9. Yamazaki K, Abe S, Tagekawa H, Sukoh N, Watanabe N, Ogura S, Nakajima I, Isobe H, Inoue K, Kawakami Y . Tumor angiogenesis in human lung adenocarcinoma Cancer 1994 74: 2245–2250

    Article  CAS  Google Scholar 

  10. Vacca A, Ribatti D, Roncali L, Ranieri G, Serio G, Silvestris F, Dammacco F . Bone marrow angiogenesis and progression in multiple myeloma Br J Haematol 1994 87: 503–508

    Article  CAS  Google Scholar 

  11. Ribatti D, Vacca A, Nico B, Fanelli M, Roncali L, Dammacco F . Angiogenesis spectrum in the stroma of B-cell non Hodgkin's lymphomas. An immunohistochemical and structural study Eur J Haematol 1996 56: 45–53

    Article  CAS  Google Scholar 

  12. Perez-Atayde AR, Sallan SE, Tedrow V, Connors S, Allred E, Folrman J . Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia Am J Pathol 1997 150: 815–821

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Aguayo A, Kantarjian H, Manshouri T, Gidel C, Estey E, Thomas D, Koller C, Estrov Z, O'Brien S, Keating M, Freireich E, Albitar M . Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes Blood 2000 96: 2240–2245

    CAS  PubMed  Google Scholar 

  14. Padro T, Ruiz S, Bieker R, Bürger H, Steins M, Kienast J, Büchner T, Berdel WE, Mesters RM . Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia Blood 2000 95: 2637–2644

    CAS  PubMed  Google Scholar 

  15. Aguayo A, Estey E, Kantarjian H, Manshouri T, Gidel C, Keating M, Giles F, Estrov Z, Barlogie B, Albitar M . Cellular vascular endothelial growth factor is a predictor of outcome in patients with acute myeloid leukemia Blood 1999 94: 3717–3721

    CAS  Google Scholar 

  16. Aguayo A, O'Brien S, Keating M, Manshouri T, Gidel C, Barlogie B, Beran M, Koller C, Kantarjian H, Albitar M . Clinical relevance of intracellular vascular endothelial growth factor levels in B-cell chronic lymphocytic leukemia Blood 2000 96: 768–770

    CAS  PubMed  Google Scholar 

  17. Pruneri G, Bertolini F, Soligo D, Carboni N, Cortelezzi A, Ferrucci PF, Buffa R, Lambertenghi-Deliliers G, Pezzella F . Angiogenesis in myelodysplastic syndromes Br J Cancer 1999 81: 1398–1401

    Article  CAS  Google Scholar 

  18. Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J, Lister TA, Bloomfiel CD . The World Health Organization classification of hematological malignancies report of the Clinical Advisory Committee Meeting, Airlie House, Virginia, November 1997

  19. Greenberg P, Cox C, LeBeau MM . International scoring system for evaluating prognosis in myelodysplastic syndromes Blood 1997 89: 2079–2088

    CAS  PubMed  Google Scholar 

  20. Shi SR, Key ME, Kalra K . Antigen retrieval in formalin-fixed, paraffin-embedded tissues: an enhancement method for immunohistochemical staining based on microwave oven heating of tissue sections J Histochem Cytochem 1991 39: 741–748

    Article  CAS  Google Scholar 

  21. Hsu SM, Raine L, Fanger H . Use of avidin–biotin–peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabelled antibody (PAP) procedures J Histochem Cytochem 1981 29: 577–580

    Article  CAS  Google Scholar 

  22. Hansen S, Grabau DA, Rose C, Bak M, Sorensen FB . Angiogenesis in breast cancer: a comparative study of the observer variability of methods for determining microvessel density Lab Invest 1998 78: 1563–1573

    CAS  PubMed  Google Scholar 

  23. Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH . Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma J Natl Cancer Inst 1992 84: 1875–1887

    Article  CAS  Google Scholar 

  24. Fox E, Ulrich C . Sigma Scan Image Measurement Software, User's Manual, 1995, Sigma Scan, Jandel Scientific, Erkrath, Germany

  25. Bruyn PPH, Breen PC, Thomas TB . The microcirculation of the bone marrow Anat Rec 1970 168: 55–68

    Article  Google Scholar 

  26. Branemark P-I . Bone marrow microvascular structure and function Adv Microcirc 1968 1: 1–65

    Google Scholar 

  27. Yamaguchi H, Ishii E, Saito S, Tashiro K, Fujita I, Yoshidani S, Ohtubo M, Akazawa K, Miyazaki S . Umbilican vein endothelial cells are an important source of c-kit and stem cell factor which regulate the proliferation of haemopoietic progenitor cells Br J Haematol 1996 94: 606–611

    Article  CAS  Google Scholar 

  28. Fiedler W, Graeven U, Ergün S, Verago S, Kilie N, Stockschlader M, Hossfeld DK . Vascular endothelial growth factor, a possible paracrine growth factor, in human acute myeloid leukemia Blood 1997 89: 1870–1875

    CAS  Google Scholar 

  29. Garcia-Monzon C, Sanchez-Madrid F, Gardcia-Buey L, Garcia-Arroyo A, Garcia-Sanchez A, Moreno-Otero R . Vascular adhesion molecule expression in viral chronic hepatitis: evidence of neoangiogenesis in portal tracts Gastroenterology 1995 108: 231–241

    Article  CAS  Google Scholar 

  30. Drake CJ, Little CD . VEGF and vascular fusion: implications for normal and pathological vessels J Histochem Cytochem 1999 47: 1351–1356

    Article  CAS  Google Scholar 

  31. Benjamin LE, Keshet E . Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal Proc Natl Acad Sci USA 1997 94: 8761–8766

    Article  CAS  Google Scholar 

  32. Bellamy WT, Richter L, Frutiger Y, Sirjani D, Glinsmann-Gibson B, Grogan TM, List AF . Vascular endothelial cell growth factor (VEGF) is an autocrine promoter of ALIP and leukemia progenitor formation in myelodysplastic syndromes (MDS) Blood 1999 94: (Suppl. 1) 389a (Abstr.)

    Google Scholar 

  33. Patan S, Munn LL, Jain RK . Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: a novel mechanism of tumor angiogenesis Microvasc Res 1996 51: 260–272

    Article  CAS  Google Scholar 

  34. Vermeulen PB, Verhoeven D, Fierens H, Hubens G, Goovaerts G, Van Marck E, de Bruijn EA, Von Oosterom AT, Dirix LY . Microvessel quantification in primary colorectal carcinoma: an immunohistochemical study Br J Cancer 1995 71: 340–343

    Article  CAS  Google Scholar 

  35. Rajkumar SV, Leong T, Roche PC, Fonseca R, Dispenzieri A, Lacy M, Lust JA, Witzig TE, Kyle RA, Gertz MA, Greipp PR . Prognostic value of bone marrow angiogenesis in multiple myeloma Clin Cancer Res 2000 6: 3111–3116

    CAS  PubMed  Google Scholar 

  36. Rajkumar SV, Fonseca R, Dispenzieri A, Lacy MR, Lust JA, Witzig TE, Kyle RA, Gertz MA, Greipp PR . Thalidomide in the treatment of relapsed multiple myeloma Mayo Clin Proc 2000 75: 897–901

    Article  CAS  Google Scholar 

  37. Mesa RA, Rajkumar SV, Hanson CA, Schroeder CS, Tefferi A . Evaluation and clinical correlations of microvessel density in myelofibrosis with myeloid metaplasia Blood 1999 94: (Suppl. 1) 155a (Abstr.)

    Google Scholar 

  38. Harris AL . Antiangiogenesis for cancer therapy Lancet 1997 349: 13–15

    Article  CAS  Google Scholar 

  39. Raza A, Lisak L, Andrew C, Little L, Muzammil M, Alvi S, Mazzoran L, Zorat F, Akber A, Ekbal M, Razvi S, Venugopal P . Thalidomide produces transfusion independence in patients with long-standing refractory anemias and myelodysplastic syndromes (MDS) Blood 1999 94: (Suppl. 1) 661a (Abstr.)

    Google Scholar 

  40. Cheson BD, Zwiebel JA, Dancey J, Murgo A . Novel therapeutic agents for the treatment of myelodysplastic syndromes Semin Oncol 2000 27: 560–577

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Miss Evie Delicha for the statistical analysis.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korkolopoulou, P., Apostolidou, E., Pavlopoulos, P. et al. Prognostic evaluation of the microvascular network in myelodysplastic syndromes. Leukemia 15, 1369–1376 (2001). https://doi.org/10.1038/sj.leu.2402220

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402220

Keywords

This article is cited by

Search

Quick links