Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Pluridisciplinary Laboratory Clinical Correlation

The association of the TEL-AML1 chromosomal translocation with the accumulation of methotrexate polyglutamates in lymphoblasts and with ploidy in childhood B-progenitor cell acute lymphoblastic leukemia: a Pediatric Oncology Group study

Abstract

Lymphoblasts from children with B-progenitor cell acute lymphoblastic leukemia (BpALL) with chromosomal hyperdiploidy and with translocations affecting chromosome 12p11–13, accumulate high and low levels of methotrexate polyglutamates (MTXPGs), respectively. Recently a cryptic translocation, t(12;21) (p13;q22), has been demonstrated by molecular and fluorescence in situ hybridization techniques in this disease. The chimeric TEL-AML1 transcript, which has been associated with this translocation, can be detected in up to 25% of children with BpALL. We detected the TEL-AML1 and/or the AML1-TEL transcript in 30 (33%) of 91 patients studied. Levels of lymphoblast MTXPGs were lower in those with than in those without the TEL-AML1 translocation (P = 0.004). Hyperdiploidy was rare in lymphoblasts with the TEL-AML1 translocation (P = 0.047). Both ploidy (P = 0.0015) and TEL-AML1 status (P = 0.0043) were independently and significantly correlated with the log of the lymphoblast MTXPG level. However, the presence of TEL-AML1 or of hyperdiploidy accounted for only 22% of the variation of this value. Our results imply that each of 1.16 DI and the presence of the TEL-AML1 translocation confers a 50% decrease in lymphoblast MTXPG level. When planning reduction of therapy for either of the two excellent outcome categories of hyperdiploid or TEL-AML1 BpALL, one should consider the difference between these two subgroups in the ability of lymphoblasts to accumulate MTXPGs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Pui C-H . Childhood leukemias New Engl J Med 1995 332: 1618–1630

    Article  CAS  PubMed  Google Scholar 

  2. Rubnitz JE, Pui CH . Childhood acute lymphoblastic leukemia Oncologist 1997 2: 374–380

    CAS  PubMed  Google Scholar 

  3. Crist W, Carroll A, Shuster J, Jackson J, Head D, Borowitz M, Behm F, Link M, Steuber P, Ragab A, Hirt A, Brock B, Land V, Pullen J . Philadelphia chromosome positive childhood acute lymphoblastic leukemia: clinical and cytogenetic characteristics and treatment outcome. A Pediatric Oncology Group study Blood 1990 76: 489–494

    CAS  PubMed  Google Scholar 

  4. Arico M, Valsecchi MG, Camitta B, Schrappe M, Chessells J, Baruchel A, Gaynon P, Silverman L, Janka-Schaub G, Kamps W, Pui CH, Masera G . Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia N Engl J Med 2000 342: 998–1006

    Article  CAS  PubMed  Google Scholar 

  5. Look AT, Roberson PK, Williams DL, Rivera G, Bowman WP, Pui C-H, Ochs J, Abromowitch M, Kalwinsky D, Dahl GV, George S, Murphy SB . Prognostic importance of blast cell DNA content in childhood acute lymphoblastic leukemia Blood 1985 65: 1079–1086

    CAS  PubMed  Google Scholar 

  6. Trueworthy R, Shuster J, Look T, Crist W, Borowitz M, Carroll A, Frankel L, Harris M, Wagner H, Haggard M, Mosijczuk A, Pullen J, Steuber P, Land V . Ploidy of lymphoblasts is the strongest predictor of treatment outcome in B-progenitor cell acute lymphoblastic leukemia of childhood: a Pediatric Oncology Group study J Clin Oncol 1992 10: 606–613

    Article  CAS  PubMed  Google Scholar 

  7. Harris MB, Shuster JJ, Carroll A, Look AT, Borowitz MJ, Crist WM, Nitschke R, Pullen J, Steuber CP, Land VJ . Trisomy of leukemic cell chromosomes 4 and 10 identifies children with B-progenitor cell acute lymphoblastic leukemia with a very low risk of treatment failure: a Pediatric Oncology Group study Blood 1992 79: 3316–3324

    CAS  PubMed  Google Scholar 

  8. Mahoney DH Jr, Shuster J, Nitschke R, Lauer SJ, Winick N, Steuber CP, Camitta B . Intermediate-dose intravenous methotrexate with intravenous mercaptopurine is superior to repetitive low-dose oral methotrexate with intravenous mercaptopurine for children with lower-risk B-lineage acute lymphoblastic leukemia: a Pediatric Oncology Group phase III trial J Clin Oncol 1998 16: 246–254

    Article  PubMed  Google Scholar 

  9. Mahoney DH Jr, Shuster JJ, Nitschke R, Lauer S, Steuber CP, Camitta B . Intensification with intermediate-dose intravenous methotrexate is effective therapy for children with lower-risk B-precursor acute lymphoblastic leukemia: a Pediatric Oncology Group study J Clin Oncol 2000 18: 1285–1294

    Article  PubMed  Google Scholar 

  10. Raimondi SC, Williams DL, Callihan T, Peiper S, Rivera GK, Murphy SB . Nonrandom involvement of the 12p12 breakpoint in chromosome abnormalities of childhood acute lymphoblastic leukemia Blood 1986 68: 69–75

    CAS  PubMed  Google Scholar 

  11. Romana SP, Le Coniat M, Berger R . t(12;21): a new recurrent translocation in acute lymphoblastic leukemia Genes Chromos Cancer 1994 9: 186–191

    Article  CAS  PubMed  Google Scholar 

  12. Kobayashi H, Rowley JD . Identification of cytogenetically undetected 12p13 translocations and associated deletions by fluorescence in situ hybridization Genes Chromos Cancer 1995 12: 66–69

    Article  CAS  PubMed  Google Scholar 

  13. Stegmaier K, Pendse S, Barker GF, Bray-Ward P, Ward DC, Montgomery KT, Krauter KS, Reynolds C, Sklar J, Donnelly M, Bohlander SK, Rowley JD, Sallan SE, Gilliland DG, Golub TR . Frequent loss of heterozygosity at the TEL gene locus in acute lymphoblastic leukemia of childhood Blood 1995 86: 38–44

    CAS  PubMed  Google Scholar 

  14. Kobayashi H, Montgomery KT, Bohlander SK, Adra CN, Lim BL, Kucherlapati RS, Donis-Keller H, Holt MS, Le Beau MM, Rowley JD . Fluorescence in situ hybridization mapping of translocations and deletions involving the short arm of human chromosome 12 in malignant hematologic diseases Blood 1994 84: 3473–3482

    CAS  PubMed  Google Scholar 

  15. Golub TR, Barker GF, Bohlander SK, Hiebert SW, Ward DC, Bray-Ward P, Morgan E, Raimondi SC, Rowley JD, Gilliland DG . Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia Proc Natl Acad Sci USA 1995 92: 4917–4921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Romana SP, Mauchauffe M, Le Coniat M, Chumakov I, Le Paslier D, Berger R, Bernard OA . The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion Blood 1995 85: 3662–3670

    CAS  PubMed  Google Scholar 

  17. Shurtleff SA, Buijs A, Behm FG, Rubnitz JE, Raimondi SC, Hancock ML, Chan GC-F, Pui C-H, Grosveld G, Downing JR . TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis Leukemia 1995 9: 1985–1989

    CAS  PubMed  Google Scholar 

  18. Romana SP, Poirel H, Leconiat M, Flexor M-A, Mauchauffé M, Jonveaux P, Macintyre EA, Berger R, Bernard OA . High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia Blood 1995 86: 4263–4269

    CAS  PubMed  Google Scholar 

  19. Harbott J, Viehmann S, Borkhardt A, Henze G, Lampert F . Incidence of TEL/AML11 fusion gene analyzed consecutively in children with acute lymphoblastic leukemia in relapse Blood 1997 90: 4933–4937

    CAS  PubMed  Google Scholar 

  20. Raynaud S, Cavé H, Baens M, Bastard C, Cacheux V, Grosgeorge J, Guidal-Giroux C, Guo C, Vilmer E, Marynen P, Grandchamp B . The 12;21 translocation involving TEL and deletion of the other TEL allele: two frequently associated alterations found in childhood acute lymphoblastic leukemia Blood 1996 87: 2891–2899

    CAS  PubMed  Google Scholar 

  21. McLean TW, Ringold S, Neuberg D, Stegmaier K, Tantravahi R, Ritz J, Koeffler HP, Takeuchi S, Janssen JW, Seriu T, Bartram CR, Sallan SE, Gilliland DG, Golub TR . TEL/AML-1 dimerizes and is associated with a favorable outcome in childhood acute lymphoblastic leukemia Blood 1996 88: 4252–4258

    CAS  PubMed  Google Scholar 

  22. Rubnitz JE, Shuster JJ, Land VJ, Link MP, Pullen DJ, Camitta BM, Pui CH, Downing JR, Behm FG . Case-control study suggests a favorable impact of TEL rearrangement in patients with B-lineage acute lymphoblastic leukemia treated with antimetabolite-based therapy: a Pediatric Oncology Group study Blood 1997 89: 1143–1146

    CAS  PubMed  Google Scholar 

  23. Rubnitz JE, Downing JR, Pui CH, Shurtleff SA, Raimondi SC, Evans WE, Head DR, Crist WM, Rivera GK, Hancock ML, Boyett JM, Buijs A, Grosveld G, Behm FG . TEL gene rearrangement in acute lymphoblastic leukemia: a new genetic marker with prognostic significance J Clin Oncol 1997 15: 1150–1157

    Article  CAS  PubMed  Google Scholar 

  24. Rubnitz JE, Behm FG, Wichlan D, Ryan C, Sandlund JT, Ribeiro RC, Rivera GK, Hancock ML, Relling MV, Evans WE, Pui CH, Downing JR . Low frequency of TEL-AML1 in relapsed acute lymphoblastic leukemia supports a favorable prognosis for this genetic subgroup Leukemia 1999 13: 19–21

    Article  CAS  PubMed  Google Scholar 

  25. Witte A, Whitehead VM, Rosenblatt DS, Vuchich MJ . Synthesis of methotrexate polyglutamates by bone marrow cells from patients with leukemia and lymphoma Dev Pharmacol Ther 1980 1: 40–46

    CAS  PubMed  Google Scholar 

  26. Whitehead VM, Rosenblatt DS . Methotrexate metabolism by bone marrow cells from patients with leukemia Adv Exp Med Biol 1983 163: 287–303

    Article  CAS  PubMed  Google Scholar 

  27. Whitehead VM, Rosenblatt DS, Vuchich M-J, Beaulieu D . Methotrexate polyglutamate synthesis in lymphoblasts from children with acute lymphoblastic leukemia Dev Pharmacol Ther 1987 10: 443–448

    Article  CAS  PubMed  Google Scholar 

  28. Lin JT, Tong WP, Trippett TM, Niedzwiecki D, Tao Y, Tan C, Steinherz P, Schweitzer BI, Bertino JR . Basis for natural resistance to methotrexate in human acute non-lymphocytic leukemia Leuk Res 1991 15: 1191–1196

    Article  CAS  PubMed  Google Scholar 

  29. Whitehead VM, Rosenblatt DS, Vuchich M-J, Shuster JJ, Witte A, Beaulieu D . Accumulation of methotrexate and methotrexate polyglutamates in lymphoblasts at diagnosis of childhood acute lymphoblastic leukemia: a pilot prognostic factor analysis Blood 1990 76: 44–49

    CAS  PubMed  Google Scholar 

  30. Masson E, Relling MV, Synold TW, Liu Q, Schuetz JD, Sandlund JT, Pui C-H, Evans WE . Accumulation of methotrexate polyglutamates in lymphoblasts is a determinant of antileukemic effects in vivo. A rationale for high-dose methotrexate J Clin Invest 1996 97: 73–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Whitehead VM, Vuchich M-J, Lauer SJ, Mahoney D, Carroll AJ, Shuster JJ, Esseltine DW, Payment C, Look AT, Akabutu J, Bowen T, Taylor LD, Camitta B, Pullen D . Accumulation of high levels of methotrexate polyglutamates in lymphoblasts from children with hyperdiploid (>50 chromosomes) B-lineage acute lymphoblastic leukemia: a Pediatric Oncology Group Study Blood 1992 80: 1316–1323

    CAS  PubMed  Google Scholar 

  32. Synold TW, Relling MV, Boyett JM, Rivera GK, Sandlund JT, Mahmoud H, Crist WM, Pui C-H, Evans WE . Blast cell methotrexate-polyglutamate accumulation in vivo differs by lineage, ploidy, and methotrexate dose in acute lymphoblastic leukemia J Clin Invest 1994 94: 1996–2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Whitehead VM, Vuchich M-J, Carroll AJ, Lauer SJ, Mahoney D, Shuster JJ, Payment C, Koch PA, Akabutu JJ, Bowen T, Kamen BA, Ravindranath Y, Emami A, Beardsley GP, Pullen DJ, Camitta B . Accumulation of methotrexate polyglutamates, ploidy and trisomies of both chromosomes 4 and 10 in lymphoblasts from children with B-progenitor cell acute lymphoblastic leukemia: A Pediatric Oncology Group Study Leuk Lymphoma 1998 31: 507–519

    Article  CAS  PubMed  Google Scholar 

  34. Whitehead VM, Vuchich MJ, Cooley L, Lauer SJ, Mahoney DH, Shuster JJ, Payment C, Bernstein ML, Akabutu JJ, Bowen T, Kamen BA, Watson MS, Look AT, Pullen DJ, Camitta B . Translocations involving chromosome 12p11-13, methotrexate metabolism, and outcome in childhood B-progenitor cell acute lymphoblastic leukemia: a Pediatric Oncology Group study Clin Cancer Res 1998 4: 183–188

    CAS  PubMed  Google Scholar 

  35. Crist WM, Carroll AJ, Shuster JJ, Behm FG, Whitehead M, Vietti TJ, Look AT, Mahoney D, Ragab A, Pullen DJ, Land VJ . Poor prognosis of children with pre-B acute lymphoblastic leukemia is associated with the t(1;19)(q23;p13): a Pediatric Oncology Group study Blood 1990 76: 117–122

    CAS  PubMed  Google Scholar 

  36. Look AT, Melvin SL, Williams SL, Brodeur GM, Dahl GV, Kalwinsky DK, Murphy SB, Mauer AM . Aneuploidy and percentage of S-phase cells determined by flow cytometry correlate with cell phenotype in childhood acute leukemia Blood 1982 60: 959–967

    CAS  PubMed  Google Scholar 

  37. Miyoshi H, Ohira M, Shimizu K, Mitani K, Hirai H, Imai T, Yokoyama K, Soeda E, Ohki M . Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia Nucleic Acids Res 1995 23: 2762–2769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lehmann EL . Nonparametrics: Statistical methods Based on Ranks Holden-Day: San Francisco, CA 1975

    Google Scholar 

  39. Neter J, Wasserman W, Kutner M . Applied Linear Statistical Models, 3rd edn Irwin Publications: Boston 1990

    Google Scholar 

  40. Moscow JA, Gong M, He R, Sgagias MK, Dixon KH, Anzick SL, Meltzer PS, Cowan KH . Isolation of a gene encoding a human reduced folate carrier (RFC1) and analysis of its expression in transport-deficient, methotrexate-resistant human breast cancer cells Cancer Res 1995 55: 3790–3794

    CAS  PubMed  Google Scholar 

  41. Belkov VM, Krynetski EY, Schuetz JD, Yanishevski Y, Masson E, Mathew S, Raimondi S, Pui CH, Relling MV, Evans WE . Reduced folate carrier expression in acute lymphoblastic leukemia: a mechanism for ploidy but not lineage differences in methotrexate accumulation Blood 1999 93: 1643–1650

    CAS  PubMed  Google Scholar 

  42. Zhang L, Taub JW, Williamson M, Wong SC, Hukku B, Pullen J, Ravindranath Y, Matherly LH . Reduced folate carrier gene expression in childhood acute lymphoblastic leukemia: relationship to immunophenotype and ploidy Clin Cancer Res 1998 4: 2169–2177

    CAS  PubMed  Google Scholar 

  43. Garrow TA, Admon A, Shane B . Expression cloning of a human cDNA encoding folylpoly(gamma-glutamate) synthetase and determination of its primary structure Proc Natl Acad Sci USA 1992 89: 9151–9155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rhee MS, Lindau-Shepard B, Chave KJ, Galivan J, Ryan TJ . Characterization of human cellular gamma-glutamyl hydrolase Mol Pharmacol 1998 53: 1040–1046

    CAS  PubMed  Google Scholar 

  45. Galpin AJ, Schuetz JD, Masson E, Yanishevski Y, Synold TW, Barredo JC, Pui CH, Relling MV, Evans WE . Differences in folypolyglutamate synthetase and dihydrofolate reductase expression in human B-lineage versus T-lineage leukemic lymphoblasts: mechanisms for lineage differences in methotrexate polyglutamylation and cytotoxicity Mol Pharmacol 1997 52: 155–163

    Article  CAS  PubMed  Google Scholar 

  46. Longo GS, Gorlick R, Tong WP, Lin S, Steinherz P, Bertino JR . Gamma-glutamyl hydrolase and folypolyglutamate synthetase activities predict polyglutamylation of methotrexate in acute leukemias Oncol Res 1997 9: 259–263

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the following grants from the National Cancer Institute: CA-33587, CA-25408, CA-32053, CA-03161, CA-29139, CA-53490, CA-33625, CA-29691, CA-28841, CA-31566, CA-52317, CA-15989. In addition, it was supported by grants from the National Cancer Institute of Canada, the Cancer Research Society and the McGill University – Montreal Children's Hospital Research Institute, and assisted by the Penny Cole Fund, the Fast Foundation, the InterService Clubs Council Telethon of Stars, the Lamplighters Children's Cancer–Leukemia Association, the Children's Cancer Fund, the Debbie Saunders Fund, the friends of Ande, the Midwest Athletes against Childhood Cancer (MACC Fund), the American Lebanese Syrian Associated Charities (ALSAC) and the American Cancer Society.

Author information

Authors and Affiliations

Authors

Appendix: Participating Institutions and NCI Grant Support

Appendix: Participating Institutions and NCI Grant Support

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitehead, V., Payment, C., Cooley, L. et al. The association of the TEL-AML1 chromosomal translocation with the accumulation of methotrexate polyglutamates in lymphoblasts and with ploidy in childhood B-progenitor cell acute lymphoblastic leukemia: a Pediatric Oncology Group study. Leukemia 15, 1081–1088 (2001). https://doi.org/10.1038/sj.leu.2402165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402165

Keywords

This article is cited by

Search

Quick links