Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Molecular cytogenetics

t(7;12)(q36;p13) and t(7;12)(q32;p13) – translocations involving ETV6 in children 18 months of age or younger with myeloid disorders

Abstract

Our retrospective karyotype review revealed two rare recurrent translocations affecting ETV6 (TEL): t(7;12)(q36;p13) and t(7;12)(q32;p13). Five patients with a t(7;12) were from a group of 125 successfully karyotyped pediatric patients enrolled in consecutive clinical AML trials of the Dutch Childhood Leukemia Study Group over a period of 7 years. During a search of available cytogenetic databases, we found 7q and 12p abnormalities in two additional Dutch patients and in three participants in Pediatric Oncology Group trials. A del(12p) had been initially identified in four of these patients and re-examination of the original karyograms revealed a t(7;12)(q36;p13) in two instances and a probable t(7;12) in the other two. FISH confirmed the presence of a t(7;12)(q36;p13) in the latter. Most (n = 7) also had trisomy 19. The t(7;12)(q36;p13) (n = 9) was more common than the t(7;12)(q32;p13) (n = 1). These subtle translocations were found only in children 18 months of age or younger. A literature search revealed that the t(7;12) with breakpoints at 7q31-q36 and 12p12-p13 had been reported in six children with myeloid disorders and in two with acute lymphoblastic leukemia; all were 12 months of age or younger. Only two of the 17 for whom survival data were available, were alive after at least 22 months of continuous complete remission. Our findings suggest that ETV6rearrangements due to a t(7;12) may play an adverse role in myeloid disorders in children 18 months of age or younger. Therefore, children in this age group with myeloid disorders should be screened for both MLL and ETV6 rearrangements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Rubnitz JE, Pui C-H, Downing JR . The role of TEL fusion genes in pediatric leukemias Leukemia 1999 13: 6–13

    Article  CAS  Google Scholar 

  2. Tosi S, Giudici G, Mosna G, Harbott J, Specchia G, Grosveld G, Privitera E, Kearney L, Biondi A, Cazzaniga G . Identification of new partner chromosomes involved in fusions with the ETV6 (TEL) gene in hematologic malignancies Genes Chromosomes Cancer 1998 21: 223–229

    Article  CAS  Google Scholar 

  3. Wlodarska I, La Starza R, Baens M, Dierlamm J, Uyttebroeck A, Selleslag D, Francine A, Mecucci C, Hagemeijer A, Van den Berghe H, Marynen P . Fluorescence in situ hybridization characterization of new translocations involving TEL (ETV6) in a wide spectrum of hematologic malignancies Blood 1998 91: 1399–1406

    CAS  PubMed  Google Scholar 

  4. Satake N, Maseki N, Nishiyama M, Kobayashi H, Sakurai M, Inaba H, Katano N, Horikoshi Y, Eguchi H, Miyake M, Seto M, Kaneko Y . Chromosome abnormalities and MLL rearrangements in acute myeloid leukemia of infants Leukemia 1999 13: 1013–1017

    Article  CAS  Google Scholar 

  5. Hagemeijer A, Buijs A, Smit E, Janssen B, Creemers GJ, Van der Plas D, Grosveld G . Translocation of BCR to chromosome 9: a new cytogenetic variant detected by FISH in two Ph-negative, BCR-positive patients with chronic myeloid leukaemia Genes Chromosomes Cancer 1993 8: 237–245

    Article  CAS  Google Scholar 

  6. Ning Y, Roschke A, Smith AM, Macha M, Precht K, Riethman H, Ledbetter DH, Flint J, Horsley S, Regan R, Kearney L, Knight S, Kvaloy K, Brown WA . A complete set of human telomeric probes and their clinical application. National Institutes of Health and Institute of Medicine collaboration Nat Genet 1996 14: 86–89

    Article  Google Scholar 

  7. Marsden PA, Heng HH, Scherer SW, Stewart RJ, Hall AV, Shi XM, Tsui LC, Schappert KT . Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene J Biol Chem 1993 268: 17478–174788

    CAS  PubMed  Google Scholar 

  8. van der Burg M, Beverloo HB, Langerak AW, Wijsman J, van Drunen E, Slater R, van Dongen JJM . Rapid and sensitive detection of all types of MLL gene translocations with a single FISH probe set Leukemia 1999 13: 2107–2113

    Article  CAS  Google Scholar 

  9. Hernandez JM, Mecucci M, Beverloo HB, Selleri L, Wlodarska I, Stul M, Michaux L, Verhoef G, Van Orshoven A, Cassiman JJ, Evans GA, Hagemeijer A, Van den Berghe H . Translocation (11;15)(q23;q14) in three patients with acute non-lymphocytic leukemia (ANLL): clinical, cytogenetic and molecular studies Leukemia 1995 9: 1162–1166

    CAS  PubMed  Google Scholar 

  10. Mitelman F for the International Standing Committee on Human Cytogenetic Nomenclature . (ISCN 1995). An international system for human cytogenetic Nomenclature Karger: Farmington, CT 1995

    Google Scholar 

  11. Kaneko Y, Shikano T, Maseki N, Sakurai M, Sakurai M, Takeda T, Hiyoshi Y, Mimaya J, Fujimoto T . Clinical characteristics of infant acute leukemia with and without 11q23 translocations Leukemia 1988 2: 672–676

    CAS  PubMed  Google Scholar 

  12. Hagemeijer A, van Zanen GE, Smit EM, Hahlen K . Bone marrow karyotypes of children with nonlymphocytic leukaemia Pediatr Res 1979 13: 1247–1254

    Article  CAS  Google Scholar 

  13. Raimondi SC, Chang MN, Ravindranath Y, Behm FG, Gresik MV, Steuber CP, Weinstein HJ, Carroll AJ . Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in a co-operative Pediatric Oncology Group Study POG 8821 Blood 1999 94: 3707–3716

    CAS  PubMed  Google Scholar 

  14. Heerema NA, Arthur DC, Sather H, Albo V, Feusner J, Lange BJ, Steinherz PG, Zeltzer P, Hammond D, Reaman GH . Cytogenetic features of infants less than 12 months of age at diagnosis of acute lymphoblastic leukemia: impact of the 11q23 breakpoint on outcome: a report of the Childrens Cancer Group Blood 1994 83: 2274–2284

    CAS  PubMed  Google Scholar 

  15. Heim S, Bekassy AN, Garwick S, Heldrup J, Wiebe T, Kristoffersson U, Mandahl N, Mitelman F . New structural chromosomal rearrangements in congenital leukemia Leukemia 1987 1: 16–23

    CAS  PubMed  Google Scholar 

  16. Slater R, Behrendt H, de Waal FC . Chromosome studies on acute nonlymphoblastic leukaemia in children Pediatr Res 1984 17: 398–405

    Article  Google Scholar 

  17. Buijs A, Sherr S, van Baal S, van Bezouw S, van der Plas D, Geurts van Kessel A, Riegman P, Lekanne Deprez R, Zwarthoff E, Hagemeijer A, Grosveld G . Translocation (12;22)(p13;q11) in myeloproliferative disorders results in a fusion of ETS-like TEL gene on 12p13 to the MN1 gene on 22q11 Oncogene 1995 10: 1511–1519

    CAS  PubMed  Google Scholar 

  18. Suto Y, Sato Y, Smith SD, Rowley JD, Bohlander SK . A t(6;12) (q23;p13) results in the fusion of a novel gene, STL, in a B-cell ALL cell line Genes Chromosomes Cancer 1997 18: 254–268

    Article  CAS  Google Scholar 

  19. Cools J, Bilhou-Nabera C, Wlodarska I, Cabrol C, Talmant P, Bernard P, Hagemeijer A, Marynen P . Fusion of a novel gene, BTL, to ETV6 in acute myeloid leukemias with a t(4;12)(q11-q12;p13) Blood 1999 94: 1820–1824

    CAS  PubMed  Google Scholar 

  20. Greaves MF . Infant leukaemia biology, aetiology and treatment Leukemia 1996 10: 372–377

    CAS  PubMed  Google Scholar 

  21. Biondi A, Cimino G, Pieters R, Pui C-H . Biological and therapeutic aspects of infant leukemia Blood 2000 96: 24–33

    CAS  PubMed  Google Scholar 

  22. Pui C-H, Ribeiro RC, Campana D, Raimondi SC, Hancock ML, Behm FG, Sandlund JT, Rivera GK, Evans WE, Crist WM, Krance R . Prognostic factors in the acute lymphoid and myeloid leukemias of infants Leukemia 1996 10: 952–956

    CAS  PubMed  Google Scholar 

  23. Hilden JM, Smith FO, Frestedt JL, McGlennen R, Howells WB, Sorensen PHB, Arthur DC, Woods WG, Buckley J, Bernstein ID, Kersey JH . MLL gene rearrangement, cytogenetic 11q23 abnormalities, and expression of the NG2 molecule in infant acute myeloid leukemia Blood 1997 89: 3801–3805

    CAS  PubMed  Google Scholar 

  24. Maloney KW, Rubnitz JE, Cleary ML, Frankel LS, Hakami N, Link MP, Pullen DJ, Hunger SP . Lack of ETV6 (TEL) gene rearrangements or p16INK4A/p15INK4B homozygous gene deletions in infant acute lymphoblastic leukemia Leukemia 1997 11: 979–983

    Article  CAS  Google Scholar 

  25. Rowley JD . The role of chromosome translocations in leukemogenesis Semin Hematol 1999 36 (4 Suppl. 7): 59–72

    Google Scholar 

  26. Gale KB, Ford AM, Repp R, Borkhardt A, Keller C, Eden OB, Greaves MF . Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots Proc Natl Acad Sci USA 1997 94: 13950–13954

    Article  CAS  Google Scholar 

  27. Wiemels JL, Cazzaniga G, Daniotti M, Eden OB, Addison GM, Masera G, Saha V, Biondi A, Greaves MF . Prenatal origin of acute lymphoblastic leukaemia in children Lancet 1999 354: 1499–1503

    Article  CAS  Google Scholar 

  28. Greaves MF . Aetiology of acute leukaemia Lancet 1997 349: 344–349

    Article  CAS  Google Scholar 

  29. Tosi S, Harbott J, Teigler-Schlegel A, Haas OA, Pirc-Danoewinata H, Harrison CJ, Biondi A, Cazzaniga G, Kempski H, Scherer SW, Kearney L . t(7;12)(q36;p13), a new recurrent translocation involving ETV6 in infant leukemia Genes Chromosomes Cancer 2000 Available at: http://www3.interscience.wiley.com/cgi-bin/fulltext/73000229/main.html,ftx_abs

Download references

Acknowledgements

We thank the technical staff of the cytogenetic laboratories involved in this study for their expert assistance and Dr JC Jones for her editorial assistance. The ENOS cosmid was kindly supplied by Dr R de Crom, Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands, the ETV6 cosmids were a generous gift from Dr P Marynen, Center for Human Genetics, Leuven, Belgium, and the alpha-satellite probe for the centromeric region of chromosome 7 (p7t1) was kindly provided by Dr P Devilee, Department of Pathology, University of Leiden, Leiden, The Netherlands. We also thank the following board members of the DCLSG for their cooperation in this study: MVA Bruin, K Hählen, WA Kamps, FAE Nabben, A Postma, JA Rammeloo, GAM de Vaan, ET van ‘t Veer-Korthof, AJP Veerman and RS Weening. This work was supported in part by a grant from the Association for International Cancer Research (No. 99–111), by the American Lebanese Syrian Associated Charities (ALSAC), and by grants (Nos CA31566 and CA 25408) from the National Institutes of Health to investigators for POG protocols 8821 and 9421.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slater, R., Drunen, E., Kroes, W. et al. t(7;12)(q36;p13) and t(7;12)(q32;p13) – translocations involving ETV6 in children 18 months of age or younger with myeloid disorders. Leukemia 15, 915–920 (2001). https://doi.org/10.1038/sj.leu.2402121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402121

Keywords

This article is cited by

Search

Quick links