Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Cytokines increase theraputic specificity index

TGFβ-induced SMAD2 phosphorylation predicts inhibition of thymidine incorporation in CD34+ cells from healthy donors, but not from patients with AML after MDS

Abstract

Cells from patients with MDS-derived AML display heterogeneous proliferative responses to transforming growth factor beta (TGFβ). We analyzed growth inhibition and SMAD2 phosphorylation by TGFβ in CD34+ cells from nine patients, as compared to normal controls. While TGFβ consistently inhibited thymidine incorporation of normal cells (41% of control, P < 0.05), cells from patients with aml were growth-inhibited in only four of seven cases (40%), whereas TGFβ stimulated thymidine incorporation in the three other samples (166%). Remarkably, TPO reverted the stimulatory effect of TGFβ to profound growth inhibition. Upon exposure to TGFβ, SMAD2 protein was phosphorylated in normal CD34+ cells (n = 3), CD34+ leukemic blasts from all examined patients with AML (n = 4), and in the myeloid leukemic cell lines M-07e and HEL. TGFβ inhibited TPO-mediated thymidine incorporation, cell proliferation and survival in all samples analyzed. In M-07e cells and CD34+ cells from healthy donors, this inhibition was enhanced by an antagonist of JAK2 (AG490), but not a MEK-1 antagonist (PD098059). Conversely, in CD34+ cells from a patient with AML, both AG490 and PD098059 significantly enhanced TGFβ-mediated suppression of TPO-induced thymidine incorporation. Thus, in MDS-derived AML, altered responses to TGFβ may be due to defects downstream of SMAD2 and may involve MAPK activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Sitnicka E, Ruscetti FW, Priestley GV, Wolf NS, Bartelmez SH . Transforming growth factor beta 1 directly and reversibly inhibits the initial cell divisions of long-term repopulating hematopoietic stem cells Blood 1996 88: 82–88

    CAS  PubMed  Google Scholar 

  2. Bonnet D, Lemoine FM, Najman A, Guigon M . Comparison of the inhibitory effect of AcSDKP, TNF-alpha, TGF-beta, and MIP-1 alpha on marrow-purified CD34+ progenitors Exp Hematol 1995 23: 551–556

    CAS  PubMed  Google Scholar 

  3. Piacibello W, Ferrero D, Sanavio F, Badoni R, Stacchini A, Severino A, Aglietta M . Responsiveness of highly enriched CFU-GM subpopulations from bone marrow, peripheral blood, and cord blood to hemopoietic growth inhibitors Exp Hematol 1991 19: 1084–1089

    CAS  PubMed  Google Scholar 

  4. Keller JR, Sing GK, Ellingsworth LR, Ruscetti FW . Transforming growth factor beta: possible roles in the regulation of normal and leukemic hematopoietic cell growth J Cell Biochem 1989 39: 175–184

    Article  CAS  Google Scholar 

  5. Ottmann OG, Pelus LM . Differential proliferative effects of transforming growth factor-beta on human hematopoietic progenitor cells J Immunol 1988 140: 2661–2665

    CAS  PubMed  Google Scholar 

  6. Krystal G, Lam V, Dragowska W, Takahashi C, Appel J, Gontier A, Jenkins A, Lam H, Quon L, Lansdorp P . Transforming growth factor beta 1 is an inducer of erythroid differentiation J Exp Med 1994 180: 851–860

    Article  CAS  Google Scholar 

  7. Kuter DJ, Gminski DM, Rosenberg RD . Transforming growth factor beta inhibits megakaryocyte growth and endomitosis Blood 1992 79: 619–626

    CAS  PubMed  Google Scholar 

  8. Greenberg SM, Chandrasekhar C, Golan DE, Handin RI . Transforming growth factor beta inhibits endomitosis in the Dami human megakaryocytic cell line Blood 1990 76: 533–537

    CAS  PubMed  Google Scholar 

  9. Ramsfjell V, Borge OJ, Cui L, Jacobsen SE . Thrombopoietin directly and potently stimulates multilineage growth and progenitor cell expansion from primitive (CD34+ CD38) human bone marrow progenitor cells: distinct and key interactions with the ligands for c-kit and flt3, and inhibitory effects of TGF-beta and TNF-alpha J Immunol 1997 158: 5169–5177

    CAS  PubMed  Google Scholar 

  10. Quentmeier H, Zaborski M, Graf G, Ludwig WD, Drexler HG . Expression of the receptor MPL and proliferative effects of its ligand thrombopoietin on human leukemia cells Leukemia 1996 10: 297–310

    CAS  PubMed  Google Scholar 

  11. Heldin CH, Miyazono K, ten Dijke P . TGF-beta signalling from cell membrane to nucleus through SMAD proteins Nature 1997 390: 465–471

    Article  CAS  Google Scholar 

  12. Riggins GJ, Kinzler KW, Vogelstein B, Thiagalingam S . Frequency of Smad gene mutations in human cancers Cancer Res 1997 57: 2578–2580

    CAS  PubMed  Google Scholar 

  13. Kleeff J, Friess H, Simon P, Susmallian S, Buchler P, Zimmermann A, Buchler MW, Korc M . Overexpression of Smad2 and colocalization with TGF-beta1 in human pancreatic cancer Dig Dis Sci 1999 44: 1793–1802

    Article  CAS  Google Scholar 

  14. Nomura M, Li E . Smad2 role in mesoderm formation, left-right patterning and craniofacial development Nature 1998 393: 786–790

    Article  CAS  Google Scholar 

  15. Murohashi I, Endho K, Nishida S, Yoshida S, Jinnai I, Bessho M, Hirashima K . Differential effects of TGF-beta 1 on normal and leukemic human hematopoietic cell proliferation Exp Hematol 1995 23: 970–977

    CAS  PubMed  Google Scholar 

  16. Taetle R, Payne C, Dos Santos B, Russell M, Segarini P . Effects of transforming growth factor beta 1 on growth and apoptosis of human acute myelogenous leukemia cells Cancer Res 1993 53: 3386–3393

    CAS  PubMed  Google Scholar 

  17. Masuya M, Kita K, Shimizu N, Ohishi K, Katayama N, Sekine T, Otsuji A, Miwa H, Shirakawa S . Biologic characteristics of acute leukemia after myelodysplastic syndrome Blood 1993 81: 3388–3394

    CAS  PubMed  Google Scholar 

  18. Suzuki T, Bessho M, Hirashima K, Tohda S, Nagata K, Morio T, Imai Y, Nara N . Enhancement by transforming growth factor-beta 1 (TGF-beta 1) of the proliferation of leukemic blast progenitors stimulated with IL-3 J Cell Physiol 1991 148: 396–403

    Article  CAS  Google Scholar 

  19. Hofmann WK, Kalina U, Wagner S, Seipelt G, Ries C, Hoelzer D, Ottmann OG . Characterization of defective megakaryocytic development in patients with myelodysplastic syndromes Exp Hematol 1999 27: 395–400

    Article  CAS  Google Scholar 

  20. Matsumura I, Ikeda H, Kanakura Y . The effects of thrombopoietin on the growth of acute myeloblastic leukemia cells Leuk Lymphoma 1996 23: 533–538

    Article  CAS  Google Scholar 

  21. Xia Z, Baer MR, Block AW, Baumann H, Wetzler M . Expression of signal transducers and activators of transcription proteins in acute myeloid leukemia blasts Cancer Res 1998 58: 3173–3180

    CAS  PubMed  Google Scholar 

  22. Ikezoe T, Takeuchi S, Kamioka M, Daibata M, Kubonishi I, Taguchi H, Miyoshi I . Analysis of the Smad2 gene in hematological malignancies Leukemia 1998 12: 94–95

    Article  CAS  Google Scholar 

  23. Eder M, Ottmann OG, Hansen-Hagge TE, Bartram CR, Falk S, Gillis S, Hoelzer D, Ganser A . In vitro culture of common acute lymphoblastic leukemia blasts: effects of interleukin-3, interleukin-7, and accessory cells Blood 1992 79: 3274–3284

    CAS  PubMed  Google Scholar 

  24. Kalina U, Hofmann W, Koschmieder S, Wagner S, Kauschat D, Hoelzer D, Ottmann OG . Alteration of c-mpl-mediated signal transduction in CD34(+) cells from patients with myelodysplastic syndromes Exp Hematol 2000 28: 1158–1163

    Article  CAS  Google Scholar 

  25. Bruno E, Horrigan SK, Van Den Berg D, Rozler E, Fitting PR, Moss ST, Westbrook C, Hoffman R . The Smad5 gene is involved in the intracellular signaling pathways that mediate the inhibitory effects of transforming growth factor-beta on human hematopoiesis Blood 1998 91: 1917–1923

    CAS  PubMed  Google Scholar 

  26. Garbe A, Spyridonidis A, Mobest D, Schmoor C, Mertelsmann R, Henschler R . Transforming growth factor-beta 1 delays formation of granulocyte–macrophage colony-forming cells, but spares more primitive progenitors during ex vivo expansion of CD34+ haemopoietic progenitor cells Br J Haematol 1997 99: 951–958

    Article  CAS  Google Scholar 

  27. Kretzschmar M, Doody J, Timokhina I, Massague J . A mechanism of repression of TGFbeta/Smad signaling by oncogenic Ras Genes Dev 1999 13: 804–816

    Article  CAS  Google Scholar 

  28. Kurokawa M, Mitani K, Irie K, Matsuyama T, Takahashi T, Chiba S, Yazaki Y, Matsumoto K, Hirai H . The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3 Nature 1998 394: 92–96

    Article  CAS  Google Scholar 

  29. Luo K, Stroschein SL, Wang W, Chen D, Martens E, Zhou S, Zhou Q . The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling Genes Dev 1999 13: 2196–2206

    Article  CAS  Google Scholar 

  30. Ulloa L, Doody J, Massague J . Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway Nature 1999 397: 710–713

    Article  CAS  Google Scholar 

  31. Kalina U, Kauschat D, Koyama N, Nuernberger H, Ballas K, Koschmieder S, Bug G, Hofmann WK, Hoelzer D, Ottmann OG . IL-18 activates STAT3 in the natural killer cell line 92, augments cytotoxic activity, and mediates IFN-gamma production by the stress kinase p38 and by the extracellular regulated kinases p44erk-1 and p42erk-21 J Immunol 2000 165: 1307–1313

    Article  CAS  Google Scholar 

  32. Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR . A synthetic inhibitor of the mitogen-activated protein kinase cascade Proc Natl Acad Sci USA 1995 92: 7686–7689

    Article  CAS  Google Scholar 

  33. Cuenco GM, Nucifora G, Ren R . Human AML1/MDS1/EVI1 fusion protein induces an acute myelogenous leukemia (AML) in mice: a model for human AML Proc Natl Acad Sci USA 2000 97: 1760–1765

    Article  CAS  Google Scholar 

  34. Meydan N, Grunberger T, Dadi H, Shahar M, Arpaia E, Lapidot Z, Leeder JS, Freedman M, Cohen A, Gazit A, Levitzki A, Roifman CM . Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor Nature 1996 379: 645–648

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Schaufler-Foundation, Frankfurt/Main, Germany and the Deutsche Knochenmarkspenderdatei (DKMS). We thank Dr JL Nichol (Amgen Inc, Thousand Oaks, CA, USA) for providing recombinant human MGDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koschmieder, S., Hofmann, WK., Kunert, J. et al. TGFβ-induced SMAD2 phosphorylation predicts inhibition of thymidine incorporation in CD34+ cells from healthy donors, but not from patients with AML after MDS. Leukemia 15, 942–949 (2001). https://doi.org/10.1038/sj.leu.2402119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402119

Keywords

This article is cited by

Search

Quick links