Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Growth Factors, Cytokines and Signal Transduction

C/EBPα and G-CSF receptor signals cooperate to induce the myeloperoxidase and neutrophil elastase genes

Abstract

To assess cooperation between G-CSF signals and C/EBPα, we characterized Ba/F3 pro-B cell lines expressing C/EBPαWT-ER and the G-CSF receptor (GCSFR). In these lines, GCSFR signals can be evaluated independent of their effect on C/EBPα levels. G-CSF alone did not induce the MPO, NE, LF, or PU.1 RNAs, and C/EBPαWT-ER alone stimulated low-level MPO and high-level PU.1 expression. Simultaneous activation of the GCSFR and C/EBPαWT-ER markedly increased MPO and NE induction at 24 h, and LF mRNA was detected at 48 h. G-CSF did not increase endogenous GCSFR, endogenous C/EBPα or exogenous C/EBPαWT-ER levels, and C/EBPαWT-ER did not induce endogenous or exogenous GCSFR. Several GCSFR mutants were also co-expressed with C/EBPαWT-ER. Mutation of all four cytoplasmic tyrosines prevented NE induction but enhanced MPO induction. Mutation of Y704 was required for increased MPO induction. Consistent with this finding, removing IL-3 without G-CSF addition enabled MPO, but not NE, induction by C/EBPαWT-ER. GCSFR signals or related signals from other receptors may cooperate with C/EBPα to direct differentiation of normal myeloid stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Scott LM, Civin CI, Rorth P, Friedman AD . A novel temporal pattern of three C/EBP family members in differentiating myelomonocytic cells Blood 1992 80: 1725–173

    CAS  PubMed  Google Scholar 

  2. Muller C, Kowenz-Leutz E, Grieser-Ada S, Graf T, Leutz A . NF-M (chicken C/EBPβ) induces eosinophilic differentiation and apoptosis in a hematopoietic progenitor cell line EMBO J 1995 14: 6127–6135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Radomska HS, Huettner CS, Zhang P, Tenen DG . CCAAT/enhancer binding protein α is a regulatory switch sufficient for induction of granulocytic differentiation from bipotential myeloid cells Mol Cell Biol 1998 18: 4301–4314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Nerlov C, McNagny KM, Doderlein G, Kowenz-Leutz E, Graf T . Distinct C/EBP functions are required for eosinophil lineage commitment and maturation Genes Dev 1998 12: 2413–2422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Hohaus S, Petrovick MS, Voso MT, Sun Z, Zhang D-E, Tenen DG . PU.1 (Spi-1) and C/EBPα regulate expression of the granulocyte–macrophage colony-stimulating factor receptor α gene Mol Cell Biol 1995 15: 5830–5845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Zhang D-E, Zhang P, Wang N-D, Hetherington CJ, Darlington GJ, Tenen DG . Absence of G-CSF signaling and neutrophil development in CCAAT enhancer binding protein α-deficient mice Proc Natl Acad Sci USA 1997 94: 569–574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Natsuka S, Akira S, Nishio Y, Hashimoto S, Sugita T, Isshiki H, Kishimoto T . Macrophage differentiation-specific expression of NF-IL6, a transcription factor for interleukin-6 Blood 1992 79: 460–466

    CAS  PubMed  Google Scholar 

  8. Smith LT, Hohaus S, Gonzalez DA, Dziennis SE, Tenen DG . PU.1 (Spi-1) and C/EBP alpha regulate the granulocyte colony-stimulating factor receptor promoter in myeloid cells Blood 1996 88: 1234–1247

    CAS  PubMed  Google Scholar 

  9. Friedman AD . GADD153/CHOP, a DNA damage-inducible protein, reduced CCAAT/enhancer binding protein activities and increased apoptosis in 32D cl3 myeloid cells Cancer Res 1996 56: 3250–3256

    CAS  PubMed  Google Scholar 

  10. Screpanti I, Romani L, Musiani P, Modesti A, Fattori E, Lazzaro D, Sellitto C, Scarpa S, Bellavia D, Lattanzio G . Lymphoproliferative disorder and imbalanced T-helper response in C/EBPβ-deficient mice EMBO J 1995 14: 1932–1941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Tanaka T, Akira S, Yoshida M, Umemoto Y, Yoneda N, Shirafuji H, Suematsu S, Yoshida N, Kishimoto T . Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicitiy by macrophages Cell 1995 80: 353–361

    Article  CAS  PubMed  Google Scholar 

  12. Tanaka T, Yoshida N, Kishimoto T, Akira S . Defective adipocyte differentiation in mice lacking the C/EBPβ and/or C/EBPδ gene EMBO J 1997 16: 7432–7443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Antonson P, Stellan B, Yamanaka R, Xanthopoulos KG . A novel human CCAAT/enhancer binding protein gene, C/EBP epsilon, is expressed in cells of lymphoid and myeloid lineages and is localized on chromosome 14q11.2 close to the T cell receptor alpha/delta locus Genomics 1996 35: 30–38

    Article  CAS  PubMed  Google Scholar 

  14. Chumakov AM, Grillier I, Chumakov E, Chih D, Slater J, Koeffler HP . Cloning of the novel human myeloid-cell-specific C/EBP-epsilon transcription factor Mol Cell Biol 1997 17: 1375–1386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Yamanaka R, Barlow C, Lekstrom-Himes J, Castilla LH, Liu PP, Eckhaus M, Decker T, Wynshaw-Boris A, Xanthopolous KG . Impaired granulopoiesis, myelodysplasia, and early lethality in CCAAT/enhancer binding protein epsilon-deficient mice Proc Natl Acad Sci USA 1997 94: 13187–13192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Wang X, Scott E, Sawyers CL, Friedman AD . C/EBPα by-passes G-CSF signals to rapidly induce PU.1 gene expression, stimulate granulocytic differentiation, and limit proliferation in 32D cl3 myeloblasts Blood 1999 94: 560–571

    CAS  PubMed  Google Scholar 

  17. Palacios R, Steinmetz M . IL3-dependent mouse clones that express B-220 surface antigen, contain Ig genes in germ-line configuration, and generate B lymphocytes Cell 1985 41: 727–734

    Article  CAS  PubMed  Google Scholar 

  18. Dong F, Brynes RK, Tidow N, Welte K, Lowenberg B, Touw IP . Mutations in the gene for granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia N Engl J Med 1995 333: 487–493

    Article  CAS  PubMed  Google Scholar 

  19. Ward AC, Hermans MHA, Smith L, van Aesch YM, Schelen AM, Antonissen C, Touw IP . Tyrosine-dependent and -independent mechanisms of STAT3 activation by the human granulocyte colony-stimulating factor (G-CSF) receptor are differentially utilized depending on G-CSF concentration Blood 1999 93: 113–124

    CAS  PubMed  Google Scholar 

  20. Morgenstern JP, Land H . Advanced mammalian gene transfer: high titre retroviral receptors with multiple drug selection markers and a complementary helper-free packaging cell line Nucleic Acids Res 1990 18: 3587–3596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Friedman AD, Krieder BL, Venturelli D, Rovera G . Transcriptional regulation of two myeloid-specific genes, myeloperoxidase and lactoferrin, during differentiation of the murine cell line 32D cl3 Blood 1991 78: 2426–2432

    CAS  PubMed  Google Scholar 

  22. Nuchprayoon I, Meyers S, Scott LM, Suzow J, Hiebert S, Friedman AD . PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2β/CBFβ oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells Mol Cell Biol 1994 14: 5558–5568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Valtieri M, Tweardy DJ, Caracciolo D, Johnson K, Mavilio F, Altman S, Snatoli D, Rovera G . Regulation of proliferative and differentiative responses in a murine progenitor cell line J Immunol 1987 138: 3829–3835

    CAS  PubMed  Google Scholar 

  24. Dong F, Van Buitenen C, Pouwels K, Hoefsloot LH, Lowenberg B, Touw IP . Distinct cytoplasmic regions of the human granulocyte colony-stimulating factor receptor involved in induction of proliferation and maturation Mol Cell Biol 1993 13: 7774–7784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Fukunaga R, Ishizaka-Ikeda E, Nagata S . Growth and differentiation signals mediated by different regions in the cytoplasmic domain of granulocyte colony-stimulating factor receptor Cell 1993 74: 1079–1087

    Article  CAS  PubMed  Google Scholar 

  26. Oelgeschläger M, Nuchprayoon I, Lüscher B, Friedman AD . C/EBP, c-Myb, and PU.1 cooperate to regulate the neutrophil elastase promoter Mol Cell Biol 1996 16: 4717–4725

    Article  PubMed Central  PubMed  Google Scholar 

  27. Bellon T, Perrotti D, Calabretta B . Granulocytic differentiation of normal hematopoietic precursor cells induced by transcription factor PU.1 correlates with negative regulation of the c-myb promoter Blood 1997 90: 1828–1839

    CAS  PubMed  Google Scholar 

  28. Rodel JE, Link DC . Suppression of apoptosis during cytokine deprivation of 32D cells is not sufficient to induce complete granulocytic differentiation Blood 1996 87: 858–864

    CAS  PubMed  Google Scholar 

  29. Lagasse E, Weissman IL . Enforced expression of bcl-2 in monocytes rescues macrophages and partially reverses osteopetrosis in op/op mice Cell 1997 89: 1021–1031

    Article  CAS  PubMed  Google Scholar 

  30. Akashi K, Kondo M, von Freeden-Jeffry U, Murray R, Weissman IL . Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice Cell 1997 89: 1033–1041

    Article  CAS  PubMed  Google Scholar 

  31. Lieschke GJ, Grail D, Hodgson G, Metcalf D, Stanley E, Cheers C, Fowler KJ, Basu S, Zhan YF, Dunn AR . Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor deficiency, and impaired neutrophil mobilization Blood 1994 84: 1737–1746

    CAS  PubMed  Google Scholar 

  32. Liu F, Wu HY, Wesselschmidt R, Kornaga T, Link DC . Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice Cell 1996 5: 491–501

    CAS  Google Scholar 

  33. Seymour JF, Lieschke GL, Grail D, Quilici C, Hodgson G, Dunn AR . Mice lacking both granulocyte colony stimulating factor (CSF) and granulocyte–macrophage CSF have impaired reproductive capacity, perturbed neonatal granulopoiesis, lung disease, amyloidosis, and reduced long-term survival Blood 1997 90: 3037–3049

    CAS  PubMed  Google Scholar 

  34. Borzillo GV, Ashmun RA, Sherr CJ . Macrophage lineage switching of murine early pre-B lymphoid cells expressing transduced fms genes Mol Cell Biol 1990 10: 2703–2714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Kaushansky K, Broudy VC, Lin N, Jorgensen MJ, McCarty J, Fox N, Zucker-Franklin D, Lofton-Day C . Thrombopoietin, the Mpl ligand, is essential for full megakaryocyte development Proc Natl Acad Sci USA 1995 92: 3234–3238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Tavernier J, Van der Heyden J, Verhee A, Brusselle G, Van Ostade X, Vanderckhove J, North J, Rankin SM, Kay AB, Robinson DS . Interleukin 5 regulates the isoform expression of its own receptor α-subunit Blood 2000 95: 1600–1607

    CAS  PubMed  Google Scholar 

  37. Pless M, Norga K, Carroll M, Heim MN, D'Andrea AD, Mathey-Prevot B . Receptors that induce erythroid differentiation of Ba/F3 cells: structural requirements and effect on STAT5 binding Blood 1997 89: 3175–3185

    CAS  PubMed  Google Scholar 

  38. Ward AC, Smith L, de Koning JP, van Aesch Y, Touw IP . Multiple signals mediate proliferation, differentiation, and survival from the granulocyte colony-stimulating factor receptor in myeloid 32D cells J Biol Chem 1999 274: 14956–14962

    Article  CAS  PubMed  Google Scholar 

  39. Ward AC, Loeb DM, Soede-Bobok AA, Touw IP, Friedman AD . Regulation of granulopoiesis by transcription factors and cytokines (review) Leukemia 2000 14: 973–990

    Article  CAS  PubMed  Google Scholar 

  40. Orita T, Shimozaki K, Murakami H, Nagata S . Binding of NF-Y transcription factor to one of the cis-elements in the myeloperoxidase gene promoter that responds to granulocyte colony-stimulating factor J Biol Chem 1997 272: 23216–23223

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y Yang and V Tanavde for assistance with FACS analysis. ADF is a Leukemia and Lymphoma Society Scholar, and his research is supported by the Children's Cancer Foundation. ACW and IPT are supported by an NWO Pioneer Grant.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Wang, X., Ward, A. et al. C/EBPα and G-CSF receptor signals cooperate to induce the myeloperoxidase and neutrophil elastase genes. Leukemia 15, 779–786 (2001). https://doi.org/10.1038/sj.leu.2402094

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402094

Keywords

This article is cited by

Search

Quick links