Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Biotechnical Methods Section BTS
  • Published:

Biotechnical Methods Section (BTS)

Detection of secondary genetic aberrations in follicle center cell derived lymphomas: assessment of the reliability of comparative genomic hybridization and standard chromosome analysis

Abstract

Secondary chromosomal aberrations in follicle center cell derived lymphomas (FCDL) usually involve gains and losses of genetic material and may be an important prognostic value. In the present study, we aimed to determine the power of comparative genomic hybridization (CGH) as compared to standard chromosome analysis (CA) to detect such secondary aberrations. The same lymph node cell suspensions prepared from 30 patients with FCDL were analyzed in parallel by CGH and CA based on R banding. In all, 73 discrepancies were found. Sixty-two imbalances were detected only by CA and 11 only by CGH. In cases with completely resolved karyotypes (n = 17), the median number of discrepancies between CGH and CA was one. However, when the karyotype was partially resolved (n = 12), the median was four (P < 0.01). discrepant results were further studied by fluorescence in situ hybridization using locus-specific probes. These data confirm, that not only for the detection of balanced aberrations, but also for the detection of unbalanced aberrations in FCDL, standard chromosome analysis is still the ‘gold standard’. In contrast, CGH is useful to detect chromosomal imbalances when no metaphases are found or no fresh material is available.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Bentz M, Dohner H, Cabot G, Lichter P . Fluorescence in situ hybridization in leukemias: ‘the FISH are spawning!’ Leukemia 1994 8: 1447–1452

    CAS  PubMed  Google Scholar 

  2. Siebert R, Weber-Matthiesen K . Fluorescence in situ hybridization as a diagnostic tool in malignant lymphomas Histochem Cell Biol 1997 8: 391–402

    Article  Google Scholar 

  3. Mitelman F . Catalog of Chromosome Aberrations in Cancer (sixth edn) Wiley-Liss: New York 1998

    Google Scholar 

  4. Cigudosa JC, Parsa NZ, Louie DC, Filippa DA, Jhanwar SC, Johansson B, Mitelman F, Chaganti RS . Cytogenetic analysis of 363 consecutively ascertained diffuse large B-cell lymphomas Genes Chromosomes Cancer 1999 25: 123–133

    Article  CAS  PubMed  Google Scholar 

  5. Poetsch M, Weber-Matthiesen K, Plendl HJ, Grote W, Schlegelberger B . Detection of the t(14;18) chromosomal translocation by interphase cytogenetics with yeast-artificial-chromosome probes in follicular lymphoma and nonneoplastic lymphoproliferation J Clin Oncol 1996 14: 963–969

    Article  CAS  PubMed  Google Scholar 

  6. Vaandrager JW, Schuuring E, Raap T, Philippo K, Kleiverda K, Kluin P . Interphase FISH detection of BCL2 rearrangement in follicular lymphoma using breakpoint-flanking probes Genes Chromosomes Cancer 2000 27: 85–94

    Article  CAS  PubMed  Google Scholar 

  7. Tilly H, Rossi A, Stamatoullas A, Lenormand B, Bigorgne C, Kunlin A, Monconduit M, Bastard C . Prognostic value of chromosomal abnormalities in follicular lymphoma Blood 1994 84: 1043–1049

    CAS  PubMed  Google Scholar 

  8. Zhang Y, Matthiesen P, Harder S, Siebert R, Castoldi G, Calasanz MJ, Wong KF, Rosenwald A, Ott G, Atkin NB, Schlegelberger B . A 3-cM commonly deleted region in 6q21 in leukemias and lymphomas delineated by fluorescence in situ hybridization Genes Chromosomes Cancer 2000 27: 52–58

    Article  CAS  PubMed  Google Scholar 

  9. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D . Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors Science 1992 258: 818–821

    Article  CAS  PubMed  Google Scholar 

  10. Forozan F, Karhu R, Kononen J, Kallioniemi A, Kallioniemi OP . Genome screening by comparative genomic hybridization Trends Genet 1997 13: 405–409

    Article  CAS  PubMed  Google Scholar 

  11. Bentz M, Werner CA, Dohner H, Joos S, Barth TF, Siebert R, Schroder M, Stilgenbauer S, Fischer K, Moller P, Lichter P . High incidence of chromosomal imbalances and gene amplifications in the classical follicular variant of follicle center lymphoma Blood 1996 88: 1437–1444

    CAS  PubMed  Google Scholar 

  12. Avet-Loiseau H, Vigier M, Moreau A, Mellerin MP, Gaillard F, Harousseau JL, Bataille R, Milpied N . Comparative genomic hybridization detects genomic abnormalities in 80% of follicular lymphomas Br J Haematol 1997 97: 119–122

    Article  CAS  PubMed  Google Scholar 

  13. Dierlamm J, Rosenberg C, Stul M, Pittaluga S, Wlodarska I, Michaux L, Dehaen M, Verhoef G, Thomas J, de Kelver W, Bakker-Schut T, Cassiman JJ, Raap AK, De Wolf-Peeters C, Van den Berghe H, Hagemeijer A . Characteristic pattern of chromosomal gains and losses in marginal zone B cell lymphoma detected by comparative genomic hybridization Leukemia 1997 11: 747–758

    Article  CAS  PubMed  Google Scholar 

  14. Nacheva EP, Grace CD, Bittner M, Ledbetter DH, Jenkins RB, Green AR . Comparative genomic hybridization: a comparison with molecular and cytogenetic analysis Cancer Genet Cytogenet 1998 100: 93–105

    Article  CAS  PubMed  Google Scholar 

  15. Larramendy ML, Huhta T, Vettenranta K, El-Rifai W, Lundin J, Pakkala S, Saarinen-Pihkala UM, Knuutila S . Comparative genomic hybridization in childhood acute lymphoblastic leukemia Leukemia 1998 12: 1638–1644

    Article  CAS  PubMed  Google Scholar 

  16. Cigudosa JC, Rao PH, Calasanz MJ, Odero MD, Michaeli J, Jhanwar SC, Chaganti RS . Characterization of nonrandom chromosomal gains and losses in multiple myeloma by comparative genomic hybridization Blood 1998 91: 3007–3010

    CAS  PubMed  Google Scholar 

  17. Wilkens L, Tchinda J, Burkhardt D, Nolte M, Werner M, Georgii A . Analysis of hematologic diseases using conventional karyotyping, fluorescence in situ hybridization (FISH), and comparative genomic hybridization (CGH) Hum Pathol 1998 29: 833–839

    Article  CAS  PubMed  Google Scholar 

  18. Schlegelberger B, Zwingers T, Harder S, Nowotny H, Siebert R, Vesely M et al. Clinicopathogenetic significance of chromosomal abnormalities in patients with blastic peripheral B-cell lymphoma Blood 1999 94: 1–8

    Google Scholar 

  19. ISCN . An International System for Human Genetic Nomenclature. Mitelman F (ed) S Karger: Basel 1995

    Google Scholar 

  20. Sambrook J, Frisch EF, Maniatis T . Molecular Cloning: A Laboratory Manual Cold Spring Harbor Laboratory Press: Cold Spring Harbor 1989

    Google Scholar 

  21. Lichter P, Bentz M, du Manoir S, Joss S . Comparative genomic hybridization. In: Verna RS, Babu A (eds) Human Chromosomes McGraw Hill: New York 1995 pp 191–210

    Google Scholar 

  22. Bentz M, Plesch A, Bullinger L, Stilgenbauer S, Ott G, Müller-Hermelink HK, Baudis M, Barth TF, Moller P, Lichter P, Döhner H . t(11;14)-positive mantle cell lymphomas exhibit complex karyotypes and share similarities with B-cell chronic lymphocytic leukemia Genes Chromosomes Cancer 2000 27: 285–294

    Article  CAS  PubMed  Google Scholar 

  23. Schlegelberger B, Metzke S, Harder S, Zulke-Jenisch R, Zhang Y, Siebert R . Classical and molecular cytogenetics of tumor cells. In: Wegener R (ed) Cytogenetics Springer-Verlag: New York 1999 pp 151–185

    Google Scholar 

  24. Johansson B, Mertens F, Mitelman F . Cytogenetic evolution patterns in non-Hodgkin's lymphoma Blood 1995 86: 3905–3914

    CAS  PubMed  Google Scholar 

  25. Wong N, Chen SJ, Cao Q, Su XY, Niu C, Wu QW, Leung TW, Wickham N, Johnson PJ, Chen Z . Detection of chromosome over- and underrepresentations in hyperdiploid acute lymphoblastic leukemia by comparative genomic hybridization Cancer Genet Cytogenet 1998 103: 20–24

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (Grant Be1454/5–2), the Deutsche Krebshilfe (Grant M 47/95 Be I and Grant 10–1556 Schl4), the Interdisciplinary Center for Clinical Cancer Research of the University of Kiel and the Hermann and Lilly Schilling-Foundation. We would like to thank Maria Jose Calasanz for her critical review of the manuscript and helpful advice and A Borowski, A Schneider, F Kahlert for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viardot, A., Martin-Subero, J., Siebert, R. et al. Detection of secondary genetic aberrations in follicle center cell derived lymphomas: assessment of the reliability of comparative genomic hybridization and standard chromosome analysis. Leukemia 15, 177–183 (2001). https://doi.org/10.1038/sj.leu.2401969

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401969

Keywords

This article is cited by

Search

Quick links