Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Leading Article

Concurrent disruption of p16INK4a and the ARF-p53 pathway predicts poor prognosis in aggressive non-Hodgkin's lymphoma

Abstract

The INK4a/ARF locus at chromosome 9p21 encodes two structurally and functionally distinct molecules with tumor-suppressive properties. p16INK4a controls cell cycle progression by inhibiting phosphorylation of the retinoblastoma protein (Rb), while ARF prevents MDM2-mediated degradation of p53. By using a panel of PCR-based methods, we have examined the status of the p16INK4a, ARF and p53 genes in 123 cases of non-Hodgkin's lymphoma (NHL) at diagnosis. Alterations of one or more of these genes were detected in seven of 36 (19%) cases with low- to intermediate-grade histology, and in 35 of 87 (40%) cases with aggressive histology. For the aggressive lymphomas, the Kaplan–Meier estimate of overall survival for cases with disruption of either p16INK4a or the ARF-p53 pathway was not different from cases with retention of both pathways (5-year survival 45% vs 35%; P = 0.85), suggesting that selective inactivation of one of the pathways does not significantly influence overall survival. By contrast, the 5-year survival was only 7% for cases with concurrent disruption of p16INK4a and the ARF-p53 pathway vs 38% for cases with retention of one or both pathways (P = 0.005). Similar results were obtained when the analysis was confined to diffuse large B cell lymphomas (P = 0.019). On stepwise multivariate regression analysis including factors from the international prognostic index, concurrent disruption of p16INK4a and the ARF-p53 pathway was an independent negative prognostic factor in NHL with aggressive histology (P = 0.006). Our results suggest that the compound status of the p16INK4a and ARF-p53 pathways is a major determinant of outcome in NHL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Harris NL, Jaffe ES, Stein H, Banks PM, Chan JKC, Cleary ML, Delsol G, De Wolf-Peeters C, Falini B, Gatter KC, Grogan TM, Isaacson PG, Knowles DM, Mason DY, Muller-Hermelink HK, Pileri SA, Piris MA, Ralfkiaer E, Warnke RA . A revised European–American classification of lymphoid neoplasms: a proposal from the international lymphoma study group Blood 1994 84: 1361–1392

    CAS  Google Scholar 

  2. The International Non-Hodgkin's Lymphoma Prognostic Factors Project . A predictive model for aggressive non-Hodgkin's lymphoma New Engl J Med 1993 329: 987–994

    Article  Google Scholar 

  3. Howard OM, Shipp MA . The cellular and molecular heterogeneity of the aggressive non-Hodgkin's lymphomas Curr Opin Oncol 1998 10: 385–391

    Article  CAS  Google Scholar 

  4. Gaidano G, Ballerini P, Gong JZ, Inghirami G, Neri A, Newcomb EW, Magrath IT, Knowles DM, Dalla-Favera R . p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia Proc Natl Acad Sci USA 1991 88: 5413–5417

    Article  CAS  Google Scholar 

  5. Villuendas R, Sanchez-Beato M, Martinez JC, Saez AI, Martinez-Delgado B, Garcia JF, Mateo MS, Sanchez-Verde L, Benitez J, Martinez P, Piris MA . Loss of p16/INK4A protein expression in non-Hodgkin's lymphomas is a frequent finding associated with tumor progression Am J Pathol 1998 153: 887–897

    Article  CAS  Google Scholar 

  6. Stranks G, Height SE, Mitchell P, Jadayel D, Yuille MA, De Lord C, Clutterbuck RD, Treleaven JG, Powles RL, Nacheva E . Deletions and rearrangement of CDKN2 in lymphoid malignancy Blood 1995 85: 893–901

    CAS  PubMed  Google Scholar 

  7. Pinyol M, Cobo F, Bea S, Jares P, Nayach I, Fernandez PL, Montserrat E, Cardesa A, Campo E . p16(INK4a) gene inactivation by deletions, mutations, and hypermethylation is associated with transformed and aggressive variants of non-Hodgkin's lymphomas Blood 1998 91: 2977–2984

    CAS  PubMed  Google Scholar 

  8. Herman JG, Civin CI, Issa J-PJ, Collector MI, Sharkis SJ, Baylin SB . Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies Cancer Res 1997 57: 837–841

    CAS  PubMed  Google Scholar 

  9. Wilson WH, Teruya-Feldstein J, Fest T, Harris C, Steinberg SM, Jaffe ES, Raffeld M . Relationship of p53, bcl-2, and tumor proliferation to clinical drug resistance in non-Hodgkin's lymphomas Blood 1997 89: 601–609

    CAS  PubMed  Google Scholar 

  10. Ichikawa A, Kinoshita T, Watanabe T, Kato H, Nagai H, Tsushita K, Saito H, Hotta T . Mutations of the p53 gene as a prognostic factor in aggressive B-cell lymphoma New Engl J Med 1997 337: 529–534

    Article  CAS  Google Scholar 

  11. Koduru PR, Zariwala M, Soni M, Gong JZ, Xiong Y, Broome JD . Deletion of cyclin-dependent kinase 4 inhibitor genes P15 and P16 in non-Hodgkin's lymphoma Blood 1995 86: 2900–2905

    CAS  PubMed  Google Scholar 

  12. Møller MB, Ino Y, Gerdes AM, Skjødt K, Louis DN, Pedersen NT . Aberrations of the p53 pathway components p53, MDM2 and CDKN2A appear independent in diffuse large B cell lymphoma Leukemia 1999 13: 453–459

    Article  Google Scholar 

  13. Greiner TC, Moynihan MJ, Chan WC, Lytle DM, Pedersen A, Anderson JR, Weisenburger DD . p53 mutations in mantle cell lymphoma are associated with variant cytology and predict a poor prognosis Blood 1996 87: 4302–4310

    CAS  PubMed  Google Scholar 

  14. Pinyol M, Hernandez L, Cazorla M, Balbin M, Jares P, Fernandez PL, Montserrat E, Cardesa A, Lopez Otin C, Campo E . Deletions and loss of expression of p16INK4a and p21Waf1 genes are associated with aggressive variants of mantle cell lymphomas Blood 1997 89: 272–280

    CAS  PubMed  Google Scholar 

  15. Koduru PR, Raju K, Vadmal V, Menezes G, Shah S, Susin M, Kolitz J, Broome JD . Correlation between mutation in P53, p53 expression, cytogenetics, histologic type, and survival in patients with B-cell non-Hodgkin's lymphoma Blood 1997 90: 4078–4091

    CAS  PubMed  Google Scholar 

  16. Klangby U, Okan I, Magnusson KP, Wendland M, Lind P, Wiman KG . p16/INK4a and p15/INK4b gene methylation and absence of p16/INK4a mRNA and protein expression in Burkitt's lymphoma Blood 1998 91: 1680–1687

    CAS  PubMed  Google Scholar 

  17. Sander CA, Yano T, Clark HM, Harris C, Longo DL, Jaffe ES, Raffeld M . p53 mutation is associated with progression in follicular lymphomas Blood 1993 82: 1994–2004

    CAS  PubMed  Google Scholar 

  18. Elenitoba-Johnson KS, Gascoyne RD, Lim MS, Chhanabai M, Jaffe ES, Raffeld M . Homozygous deletions at chromosome 9p21 involving p16 and p15 are associated with histologic progression in follicle center lymphoma Blood 1998 91: 4677–4685

    CAS  Google Scholar 

  19. Gombart AF, Morosetti R, Miller CW, Said JW, Koeffler HP . Deletions of the cyclin-dependent kinase inhibitor genes p16INK4A and p15INK4B in non-Hodgkin's lymphomas Blood 1995 86: 1534–1539

    CAS  PubMed  Google Scholar 

  20. Otsuki T, Clark HM, Wellmann A, Jaffe ES, Raffeld M . Involvement of CDKN2 (p16INK4A/MTS1) and p15INK4B/MTS2 in human leukemias and lymphomas Cancer Res 1995 55: 1436–1440

    CAS  PubMed  Google Scholar 

  21. Garcia-Sanz R, Gonzalez M, Vargas M, Chillon MC, Balanzategui A, Barbon M, Flores MT, San Miguel JF . Deletions and rearrangements of cyclin-dependent kinase 4 inhibitor gene p16 are associated with poor prognosis in B cell non-Hodgkin's lymphomas Leukemia 1997 11: 1915–1920

    Article  CAS  Google Scholar 

  22. Uchida T, Watanabe T, Kinoshita T, Murate T, Saito H, Hotta T . Mutational analysis of the CDKN2 (MTS1/p16ink4A) gene in primary B-cell lymphomas Blood 1995 86: 2724–2731

    CAS  PubMed  Google Scholar 

  23. Levine AJ . p53, the cellular gatekeeper for growth and division Cell 1997 88: 323–331

    Article  CAS  Google Scholar 

  24. Sherr CJ . Cancer cell cycles Science 1996 274: 1672–1677

    Article  CAS  Google Scholar 

  25. Serrano M, Hannon GJ, Beach D . A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4 Nature 1993 366: 704–707

    Article  CAS  Google Scholar 

  26. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D . p21 is a universal inhibitor of cyclin kinases Nature 1993 366: 701–704

    Article  CAS  Google Scholar 

  27. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B . WAF1, a potential mediator of p53 tumor suppression Cell 1993 75: 817–825

    Article  CAS  Google Scholar 

  28. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ . The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases Cell 1993 75: 805–816

    Article  CAS  Google Scholar 

  29. Sherr CJ . Tumor surveillance via the ARF-p53 pathway Genes Dev 1998 12: 2984–2991

    Article  CAS  Google Scholar 

  30. Prives C . Signaling to p53: breaking the MDM2-p53 circuit Cell 1998 95: 5–8

    Article  CAS  Google Scholar 

  31. de Stanchina E, McCurrach ME, Zindy F, Shieh SY, Ferbeyre G, Samuelson AV, Prives C, Roussel MF, Sherr CJ, Lowe SW . E1A signaling to p53 involves the p19(ARF) tumor suppressor Genes Dev 1998 12: 2434–2442

    Article  CAS  Google Scholar 

  32. Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ, Roussel MF . Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization Genes Dev 1998 12: 2424–2433

    Article  CAS  Google Scholar 

  33. Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA, Grosveld G, Sherr CJ . Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF Cell 1997 91: 649–659

    Article  CAS  Google Scholar 

  34. Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH, Peters G . The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2 EMBO J 1998 17: 5001–5014

    Article  CAS  Google Scholar 

  35. Quelle DE, Zindy F, Ashmun RA, Sherr CJ . Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest Cell 1995 83: 993–1000

    Article  CAS  Google Scholar 

  36. Stone S, Jiang P, Dayananth P, Tavtigian SV, Katcher H, Parry D, Peters G, Kamb A . Complex structure and regulation of the p16 (MTS1) locus Cancer Res 1995 55: 2988–2994

    CAS  PubMed  Google Scholar 

  37. Mao L, Merlo A, Bedi G, Shapiro GI, Edwards CD, Rollins BJ, Sidransky D . A novel p16INK4A transcript Cancer Res 1995 55: 2995–2997

    CAS  PubMed  Google Scholar 

  38. Duro D, Bernard O, Della VV, Berger R, Larsen CJ . A new type of p16INK4/MTS1 gene transcript expressed in B-cell malignancies Oncogene 1995 11: 21–29

    CAS  PubMed  Google Scholar 

  39. Zhang Y, Xiong Y, Yarbrough WG . ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways Cell 1998 92: 725–734

    Article  CAS  Google Scholar 

  40. Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee HW, Cordon-Cardo C, DePinho RA . The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53 Cell 1998 92: 713–723

    Article  CAS  Google Scholar 

  41. Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ . Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2 Proc Natl Acad Sci USA 1998 95: 8292–8297

    Article  CAS  Google Scholar 

  42. Zhang Y, Xiong Y . Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53 Mol Cell 1999 3: 579–591

    Article  CAS  Google Scholar 

  43. Tao W, Levine AJ . P19ARF stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2 Proc Natl Acad Sci USA 1999 96: 6937–6941

    Article  CAS  Google Scholar 

  44. Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D . Nucleolar Arf sequesters Mdm2 and activates p53 Nat Cell Biol 1999 1: 20–26

    Article  CAS  Google Scholar 

  45. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CAJ, Butel JS, Bradley A . Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours Nature 1992 356: 215–221

    Article  CAS  Google Scholar 

  46. Kumar R, Sauroja I, Punnonen K, Jansen C, Hemminki K . Selective deletion of exon 1β of the p19ARF gene in metastatic melanoma cell lines Genes Chromosomes Cancer 1998 23: 273–277

    Article  CAS  Google Scholar 

  47. Gardie B, Cayuela JM, Martini S, Sigaux F . Genomic alterations of the p19ARF encoding exons in T-cell acute lymphoblastic leukemia Blood 1998 91: 1016–1020

    CAS  PubMed  Google Scholar 

  48. Gonzalgo ML, Hayashida T, Bender CM, Pao MM, Tsai YC, Gonzales FA, Nguyen HD, Nguyen TT, Jones PA . The role of DNA methylation in expression of the p19/p16 locus in human bladder cancer cell lines Cancer Res 1998 58: 1245–1252

    CAS  PubMed  Google Scholar 

  49. Robertson KD, Jones PA . The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down-regulated by wild-type p53 Mol Cell Biol 1998 18: 6457–6473

    Article  CAS  Google Scholar 

  50. Markl ID, Jones PA . Presence and location of TP53 mutation determines pattern of CDKN2A/ARF pathway inactivation in bladder cancer Cancer Res 1998 58: 5348–5353

    CAS  PubMed  Google Scholar 

  51. Brenner AJ, Paladugu A, Wang H, Olopade OI, Dreyling MH, Aldaz CM . Preferential loss of expression of p16(INK4a) rather than p19(ARF) in breast cancer Clin Cancer Res 1996 2: 1993–1998

    CAS  PubMed  Google Scholar 

  52. Baur AS, Shaw P, Burri N, Delacretaz F, Bosman FT, Chaubert P . Frequent methylation silencing of p15(INK4b) (MTS2) and p16(INK4a) (MTS1) in B-cell and T-cell lymphomas Blood 1999 94: 1773–1781

    CAS  PubMed  Google Scholar 

  53. Grønbæk K, Nedergaard T, Andersen MK, thor Straten P, Guldberg P, Møller P, Zeuthen J, Hansen NE, Hou-Jensen K, Ralfkiaer E . Concurrent disruption of cell cycle associated genes in mantle cell lymphoma. A genotypic and phenotypic study of cyclin D1, p16, p15, p53 and pRb Leukemia 1998 12: 1266–1271

    Article  Google Scholar 

  54. Ueki K, Ono Y, Henson JW, Efird JT, von Deimling A, Louis DN . CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated Cancer Res 1996 56: 150–153

    CAS  PubMed  Google Scholar 

  55. Hussussian CJ, Struewing JP, Goldstein AM, Higgins PAT, Ally DS, Sheahan MD, Clark WH, Tucker MA, Dracopoli NC . Germline p16 mutations in familial melanoma Nat Genet 1994 8: 15–21

    Article  CAS  Google Scholar 

  56. Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB, Sidransky D . 5′ CpG island methylation is associated with transcriptional silencing of the tumor suppressor p16/CDKN2/MTS1 in human cancers Nature Med 1995 1: 686–692

    Article  CAS  Google Scholar 

  57. Herman JG, Jen J, Merlo A, Baylin SB . Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B1 Cancer Res 1996 56: 722–727

    CAS  PubMed  Google Scholar 

  58. Guldberg P, Grønbæk K, Aggerholm A, Platz A, thor Straten P, Ahrenkiel V, Hokland P, Zeuthen J . Detection of mutations in GC-rich DNA by bisulphite denaturing gradient gel electrophoresis Nucleic Acids Res 1998 26: 1548–1549

    Article  CAS  Google Scholar 

  59. Wang RY, Gehrke CW, Ehrlich M . Comparison of bisulfite modification of 5-methyldeoxycytidine and deoxycytidine residues Nucleic Acids Res 1980 8: 4777–4790

    Article  CAS  Google Scholar 

  60. Zeschnigk M, Lich C, Buiting K, Doerfler W, Horsthemke B . A single-tube PCR test for the diagnosis of Angelman and Prader–Willi syndrome based on allelic methylation differences at the SNRPN locus Eur J Hum Genet 1997 5: 94–98

    CAS  PubMed  Google Scholar 

  61. Abrams ES, Stanton VP . Use of denaturing gradient gel electrophoresis to study conformational transitions in nucleic acids Meth Enzymol 1992 212: 71–104

    Article  CAS  Google Scholar 

  62. Guldberg P, Nedergaard T, Nielsen HJ, Olsen AC, Ahrenkiel V, Zeuthen J . Single-step DGGE-based mutation scanning of the p53 gene: application to genetic diagnosis of colorectal cancer Hum Mutat 1997 9: 348–355

    Article  CAS  Google Scholar 

  63. Kaplan EL, Meier P . Nonparametric estimation from incomplete observations J Am Stat Assoc 1958 53: 457–481

    Article  Google Scholar 

  64. Cox DR . Regression models and life tables J Roy Stat Soc 1972 34: 187–220

    Google Scholar 

  65. Aggerholm A, Guldberg P, Hokland M, Hokland P . Extensive intra- and interindividual heterogeneity of p15INK4B methylation in acute myeloid leukemia Cancer Res 1999 59: 436–441

    CAS  PubMed  Google Scholar 

  66. Greenblatt MS, Bennett WP, Hollstein M, Harris CC . Mutations in the p53 tumour suppressor gene: clues to cancer etiology and molecular pathogenesis Cancer Res 1994 54: 4855–4878

    CAS  PubMed  Google Scholar 

  67. Cho Y, Gorina S, Jeffrey PD, Pavletich NP . Crystal structure of a p53 tumor suppressor–DNA complex: understanding tumorigenic mutations Science 1994 265: 346–355

    Article  CAS  Google Scholar 

  68. Della Valle V, Duro D, Bernard O, Larsen CJ . The human protein p19ARF is not detected in hemopoietic human cell lines that abundantly express the alternative β transcript of the p16INK4a/MTS1 gene Oncogene 1997 15: 2475–2481

    Article  CAS  Google Scholar 

  69. Gazzeri S, Della VV, Chaussade L, Brambilla C, Larsen CJ, Brambilla E . The human p19ARF protein encoded by the β transcript of the p16INK4a gene is frequently lost in small cell lung cancer Cancer Res 1998 58: 3926–3931

    CAS  PubMed  Google Scholar 

  70. Zhuang SM, Schippert A, Haugen-Strano A, Wiseman RW, Soderkvist P . Inactivations of p16INK4a-α, p16INK4a-β and p15INK4b genes in 2′,3′-dideoxycytidine- and 1,3-butadiene-induced murine lymphomas Oncogene 1998 16: 803–808

    Article  CAS  Google Scholar 

  71. Orlow I, LaRue H, Osman I, Lacombe L, Moore L, Rabbani F, Meyer F, Fradet Y, Cordon-Cardo C . Deletions of the INK4A gene in superficial bladder tumors. Association with recurrence Am J Pathol 1999 155: 105–113

    Article  CAS  Google Scholar 

  72. Tsai KY, Hu Y, Macleod KF, Crowley D, Yamasaki L, Jacks T . Mutation of E2f-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos Mol Cell 1998 2: 293–304

    Article  CAS  Google Scholar 

  73. Pan H, Yin C, Dyson NJ, Harlow E, Yamasaki L, Dyke TV . Key roles for E2F1 in signaling p53-dependent apoptosis and in cell division within developing tumors Mol Cell 1998 2: 283–292

    Article  CAS  Google Scholar 

  74. Bates S, Phillips AC, Clark PA, Stott F, Peters G, Ludwig RL, Vousden KH . p14ARF links the tumour suppressors RB and p53 Nature 1998 395: 124–125

    Article  CAS  Google Scholar 

  75. Dreyling MH, Bullinger L, Ott G, Stilgenbauer S, Muller-Hermelink HK, Bentz M, Hiddemann W, Dohner H . Alterations of the cyclin D1/p16-pRB pathway in mantle cell lymphoma Cancer Res 1997 57: 4608–4614

    CAS  PubMed  Google Scholar 

  76. Dreyling MH, Bohlander SK, Le Beau MM, Olopade OI . Refined mapping of genomic rearrangements involving the short arm of chromosome 9 in acute lymphoblastic leukemias and other hematologic malignancies Blood 1995 86: 1931–1938

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Danish Cancer Society, the E Danielsen Foundation, the Kaarsen Foundation, the Danish Medical Research Council, the Danish Cancer Research Foundation, and the Novo Nordisk Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grønbæk, K., de Nully Brown, P., Møller, M. et al. Concurrent disruption of p16INK4a and the ARF-p53 pathway predicts poor prognosis in aggressive non-Hodgkin's lymphoma. Leukemia 14, 1727–1735 (2000). https://doi.org/10.1038/sj.leu.2401901

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401901

Keywords

This article is cited by

Search

Quick links