Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Lymphoma

Karyotypic dissection of Hodgkin's disease cell lines reveals ectopic subtelomeres and ribosomal DNA at sites of multiple jumping translocations and genomic amplification

Abstract

Although the neoplastic significance of the chromosome changes widespread in Hodgkin's disease (HD) remains obscure, a distinct cytogenetic picture has emerged combining aneuploidy with structural rearrangements clustered at certain breakpoints. Notably absent are the recurrent chromosome translocations which distinguish other hematopoietic neoplasms and serve as clues to underlying oncogene alterations. The paucity of neoplastic cells in HD biopsies hinders detailed chromosome analysis. As an alternative, we investigated a panel of well characterized cell lines by classical and molecular cytogenetics, using single-gene and subtelomeric probes, including three autologous HD examples (HDLM-1/2/3) analyzed by ‘spectral karyotyping’ – the first complete HD karyotype to be documented. Although complex, most rearrangements in HDLM cells arose in vivo and included few rare but many typical HD breakpoints, notably at the r(ibosomal)DNA regions. Two types of genomic rearrangement involving DNA repeats were conspicuous: insertion and genomic amplification/coamplification of rDNA – the first genomic rDNA rearrangements to be reported in a tumor cell, and the first example of multiple ‘jumping translocations’ (JT). Of four subtelomeric microsatellite repeats tested in HDLM cells, three exhibited interstitial sites at JT, of which two (at 5qter and 9pter) were respectively associated with deletion of the 5q31–32 myeloid region, and coamplification of a recently described HD-recurrent amplicon at 9p2 together with transcriptionally silent rDNA. Altogether, three out of four HD cell lines carried interstitial 9p subtelomeres and rDNA rearrangements. Taken together, these data suggest tumorigenic rearrangements may be facilitated by ‘hitchhiking’ along with mobile DNA repeat sequences which may target gene rearrangement at 9p in HD. Southern analysis of parallel rearrangements within rDNA intergenic spacers in HDLM cells highlighted several at, or near, retroposons. As well as validating HD cell lines as cytogenetic models, and resources for identifying genes rearranged in HD, our findings warrant further investigation of the roles of DNA repeat sequences, notably subtelomeric microsatellites, rDNA spacer sequences and retroposons as facilitators and markers of tumor-gene rearrangement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Spriggs AI, Boddington MM . Chromosomes of Sternberg–Reed cells Lancet 1962 2: 153

    Article  CAS  PubMed  Google Scholar 

  2. Thangavelu M, Le Beau MM . Chromosome abnormalities in Hodgkin's disease Hematol Oncol Clin North Am 1989 3: 221–236

    Article  CAS  PubMed  Google Scholar 

  3. Atkin NB . Cytogenetics of Hodgkin's disease Cytogenet Cell Genet 1998 80: 23–27

    Article  CAS  PubMed  Google Scholar 

  4. Falzetti D, Crescenzi B, Matteucci C, Falini B, Martelli M, Van den Berghe H, Mecucci C . Genomic instability and recurrent breakpoints are main cytogenetic findings in Hodgkin's disease Haematologica 1999 84: 298–305

    CAS  PubMed  Google Scholar 

  5. Teerenhovi L, Lindholm C, Pakkala A, Franssils K, Stein H, Knuutila S . Unique display of a pathologic karyotype in Hodgkin's disease by Reed–Sternberg cells Cancer Genet Cytogenet 1988 34: 305–311

    Article  CAS  PubMed  Google Scholar 

  6. Inghirami G, Macri L, Rosati S, Zhu BY, Yee HT, Knowles DM . The Reed–Sternberg cells of Hodgkin's disease are clonal Proc Natl Acad Sci USA 1994 91: 9842–9846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kanzler H, Küppers R, Hansmann ML, Rajewski K . Hodgkin and Reed Sternberg cells in Hodgkin's disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center cells J Exp Med 1996 184: 1495–1505

    Article  CAS  PubMed  Google Scholar 

  8. Delabie J, Tierens A, Gavrill T, Wu G, Weisenburger DD, Chan WC . Phenotype, genotype and clonality of Reed–Sternberg cells in nodular sclerosing Hodgkin's disease: results of single-cell study Br J Haematol 1996 94: 198–205

    Article  CAS  PubMed  Google Scholar 

  9. Hummel M, Ziemann K, Lammert H, Pileri S, Sabatini E, Stein H . Hodgkin's disease with monoclonal and polyclonal populations of Reed–Sternberg cells New Engl J Med 1995 333: 901–906

    Article  CAS  PubMed  Google Scholar 

  10. Küppers R, Rajewsky K . The origin of Hodgkin and Reed–Sternberg cells in Hodgkin's disease Annu Rev Immunol 1998 16: 471–493

    Article  PubMed  Google Scholar 

  11. Muschen M, Rajewsky K, Brauninger A, Baur AS, Oudejans JJ, Roers A, Hansmann ML, Küppers R . Rare occurrence of classical Hodgkin's disease as a T cell lymphoma J Exp Med 2000 191: 387–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cossman J, Annunziata CM, Barash S, Staudt L, Dillon P, He WW, Ricciardi-Castagnoli P, Rosen CA, Carter KC . Reed–Sternberg cell genome expression supports a B-cell lineage Blood 1999 94: 411–416

    CAS  PubMed  Google Scholar 

  13. Lichter P . Multicolor FISHing: what's the catch? Trends Genet 1997 13: 475–479

    Article  CAS  PubMed  Google Scholar 

  14. Schröck E, du Manoir S, Veldman T, Schöll, Wienberg J, Ferguson-Smith MA, Ning Y, Ledbetter DH, Bar-Am I, Sönksen D, Garini Y, Ried T . Multicolor spectral karyotyping of human chromosomes Science 1996 273: 494–497

    Article  PubMed  Google Scholar 

  15. Drexler HG, Gaedicke G, Lok MS, Diehl V, Minowada J . Hodgkin's disease derived cell lines HDLM-2 and L-428: comparison of morphology, immunological and isoenzyme profiles Leuk Res 1986 10: 487–500

    Article  CAS  PubMed  Google Scholar 

  16. Drexler HG, Leber BF, Norton J, Yaxley J, Tatsumi E, Hoffbrand AV, Minowada J . Genotypes and immunophenotypes of Hodgkin's disease derived cell lines Leukemia 1988 2: 371–376

    CAS  PubMed  Google Scholar 

  17. Vooijs WC, Otten HG, van Vliet M, van Dijk AJ, de Weger RA, de Boer M, Bohlen H, Bolognesi A, Polito L, de Gast GC . B7-1 (CD80) as target for immunotoxin therapy for Hodgkin's disease Br J Cancer 1997 76: 1163–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Christiansen I, Sundström C, Enblad G, Tötterman TH . Soluble vascular cell adhesion molecule-1 (s VCAM-1) is an independent prognostic marker in Hodgkin's disease Br J Haematol 1998 102: 701–709

    Article  CAS  PubMed  Google Scholar 

  19. Carbone A, Gloghini A, Gattei V, Aldinucci D, Degan M, De Paoli P, Zagonel V, Pinto A . The expression of CD26 and CD40 ligand is mutually exclusive in human T-cell non-Hodgkin's lymphomas/leukemias Blood 1995 85: 780–789

    CAS  PubMed  Google Scholar 

  20. Kim SH, Choi EY, Kim TJ, Chung DH, Chang SI, Kim NK, Park SH . Generation of cells with Hodgkin's and Reed–Sternberg phenotype through downregulation of CD99 (Mic2) Blood 1998 92: 4287–4295

    CAS  PubMed  Google Scholar 

  21. Lorenzen J, Thiele J, Fischer R . The mummified Hodgkin cell: cell death in Hodgkin's disease J Pathol 1997 182: 288–298

    Article  CAS  PubMed  Google Scholar 

  22. Jungnickel B, Staratschek-Jox A, Brauninger A, Spieker T, Wolf J, Diehl V, Hansmann ML, Rajewsky K, Küppers R . Clonal deleterious mutations in the lκBα gene in the malignant cells in Hodgkin's lymphoma J Exp Med 2000 191: 395–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bargou RC, Leng C, Krappmann D, Emmerich F, Mapara MY, Bommert K, Royer HD, Scheidereit C, Dörken B . High-level nuclear NFkappa B and Oct2 is a common feature of cultured Hodgkin/Reed–Sternberg cells Blood 1996 87: 4340–4347

    CAS  PubMed  Google Scholar 

  24. Wood KM, Roff M, Hay RT . Defective lκBα in Hodgkin cell lines with constitutively active NF-κB Oncogene 1998 16: 2131–2139

    Article  CAS  PubMed  Google Scholar 

  25. Drexler HG, Dirks W, MacLeod RAF, Quentmeier H, Steube K, Uphoff CC . Catalogue of Human and Animal Cell Lines, 7th edn DSMZ (German Collection of Microorganisms and Cell Cultures): Braunschweig 1999

    Google Scholar 

  26. Sylvester JE, Whiteman DA, Podolsky R, Respess J, Schmickel RD . The human ribosomal RNA genes: structure and organization of the complete repeating unit Hum Genet 1986 73: 193–198

    Article  CAS  PubMed  Google Scholar 

  27. Worton RG, Sutherland J, Sylvester JE, Willard HF, Bodrug S, Dube I, Duff C, Kean V, Ray PN, Schmickel RD . Human ribosomal genes: orientation of the tandem array and conservation of the 5′ end Science 1988 239: 64–68

    Article  CAS  PubMed  Google Scholar 

  28. Gosden J, Hanratty D, Starling J, Fantes J, Mitchell A, Porteous D . Oligonucleotide-primed in situ DNA synthesis (PRINS): a method for chromosome mapping, banding, and investigation of sequence organization Cytogenet Cell Genet 1991 57: 100–104

    Article  CAS  PubMed  Google Scholar 

  29. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D . Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors Science 1992 258: 818–821

    Article  CAS  PubMed  Google Scholar 

  30. Joos S, Scherthan H, Speicher MR, Schlegel J, Cremer T, Lichter P . Detection of amplified DNA sequences by reverse chromosome painting using genomic tumor DNA as probe Hum Genet 1993 90: 584–589

    Article  CAS  PubMed  Google Scholar 

  31. Srivastava AK, Hagino Y, Schlessinger D . Ribosomal DNA clusters in pulsed-field gel electrophoretic analysis of human acrocentric chromosomes Mammalian Genome 1993 4: 445–450

    Article  CAS  PubMed  Google Scholar 

  32. ISCN . An international system for human cytogenetic nomenclature. Mitelman F (ed) S Karger: Basel 1995

  33. MacLeod RAF, Dirks WG, Matsuo Y, Kaufmann M, Milch H, Drexler HG . Widespread intraspecies cross-contamination of human tumor cell lines Int J Cancer 1999 83: 555–563

    Article  CAS  PubMed  Google Scholar 

  34. Cabanillas F, Pathak S, Trujillo J, Grant G, Cork A, Hagemeister FB, Velasquez WS, McLaughlin P, Redman J, Katz R, Butler JJ, Freireich EJ . Cytogenetic features of Hodgkin's disease suggest possible origin from a lymphocyte Blood 1988 71: 1615–1617

    CAS  PubMed  Google Scholar 

  35. Koduru PRK, Offit K, Fillipa DA, Lieberman PH, Jhanwar SC . Cytogenetic and molecular genetic analysis of abnormal cells in Hodgkin's disease Cancer Genet Cytogenet 1989 43: 109–118

    Article  CAS  PubMed  Google Scholar 

  36. Schouten HC, Sanger WG, Duggan M, Weisenburger DD, MacLennan KA, Armitage JO . Chromosomal abnormalities in Hodgkin's disease Blood 1989 73: 2149–2154

    CAS  PubMed  Google Scholar 

  37. Schouten HC, Sanger WG, Armitage JO . Chromosomal abnormalities in malignant lymphomas and Hodgkin's disease Leuk Lymphoma 1991 5: 93–100

    Article  CAS  PubMed  Google Scholar 

  38. Banks RE, Gledhill S, Ross FM, Krajewski A, Dewar AE, Weir-Thompson EM . Karyotypic abnormalities and immunoglobulin rearrangements in Hodgkin's disease Cancer Genet Cytogenet 1991 51: 103–111

    Article  CAS  PubMed  Google Scholar 

  39. Ladanyi M, Parsa NZ, Offit K, Wachtel MS, Filippa DA, Jhanwar SC . Clonal cytogenetic abnormalities in Hodgkin's disease Genes Chromosomes Cancer 1991 3: 294–299

    Article  CAS  PubMed  Google Scholar 

  40. Tilly H, Bastard C, Delastre T, Duval C, Bizet M, Lenormand B, Dauce J-P, Monconduit M, Piguet H . Cytogenetic studies in untreated Hodgkin's disease Blood 1991 77: 1298–1304

    CAS  PubMed  Google Scholar 

  41. Poppema S, Kaleta J, Hepperle B . Clonal chromosomal abnormalities in Hodgkin's disease Genes Chromosomes Cancer 1991 3: 294–299

    Article  Google Scholar 

  42. Döhner H, Bloomfield CD, Frizzera G, Frestedt J, Arthur DC . Recurring chromosome aberrations in Hodgkin's disease Genes Chromosomes Cancer 1992 5: 392–398

    Article  PubMed  Google Scholar 

  43. Koduru PRK, Susin M, Schulman P, Catell D, Goh JC, Karp L, Broome JD . Phenotypic and genotypic characterization of Hodgkin's disease Am J Hematol 1993 44: 117–124

    Article  CAS  PubMed  Google Scholar 

  44. Schlegelberger B, Weber-Matthiesen K, Himmler A, Bartels H, Sonnen R, Kuse R, Feller AC, Grote W . Cytogenetic findings and results of combined immunophenotyping and karyotyping in Hodgkin's disease Leukemia 1994 8: 72–80

    CAS  PubMed  Google Scholar 

  45. Mitelman F, Mertens F, Johansson B . A breakpoint map of recurrent chromosomal rearrangements in human neoplasia Nat Genet 1997 15: 417–419

    Article  CAS  PubMed  Google Scholar 

  46. Gonzalez IL, Sylvester JE . Complete sequence of the 43-kb human ribosomal repeat: analysis of the intergenic spacer Genomics 1995 27: 320–328

    Article  CAS  PubMed  Google Scholar 

  47. Jox A, Wolf J, Diehl V . Hodgkin's disease. In: Masters JRW, Palsson B (eds) Human Cell Culture, III Leukemia and Lymphoma Cell Lines Kluwer: Dordrecht (in press)

  48. Tosi S, Giudici G, Rambaldi A, Scherer SW, Bray-Ward P, Dirscherl L, Biondi A, Keamey L . Characterization of the human myeloid leukemia-derived cell line GF-D8 by multiplex fluorescence in situ hybridization, subtelomeric probes, and comparative genomic hybridization Genes Chromosomes Cancer 1999 24: 213–221

    Article  CAS  PubMed  Google Scholar 

  49. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES . Molecular classification of cancer: class discovery and class prediction by gene expression monitoring Science 1999 286: 531–537

    Article  CAS  PubMed  Google Scholar 

  50. Rasnick D, Duesberg PH . How aneuploidy affects metabolic control and causes cancer Biochem J 1999 340: 621–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sen S . Aneuploidy and cancer Curr Opin Oncol 2000 12: 82–88

    Article  CAS  PubMed  Google Scholar 

  52. Tanaka K, Arif M, Eguchi M, Kyo T, Dohy H, Kamada N . Frequent jumping translocations of chromosomal segments involving the ABL oncogene alone or in combination with CD3-MLL genes in secondary leukemias Blood 1997 89: 596–600

    CAS  PubMed  Google Scholar 

  53. Felix CA, Megonigal MD, Chervinsky DS, Leonard DG, Tsuchida N, Kakati S, Block AM . Association of germline p53 mutation with MLL jumping translocation in treatment-related leukemia Blood 1998 91: 4451–4456

    CAS  PubMed  Google Scholar 

  54. MacLeod RAF, Hu ZB, Kaufmann M, Drexler HG . Cohabiting t(12;22) and inv(3) primary rearrangements in an acute myelomonocytic (FAB M4) cell line Genes Chromosomes Cancer 1996 16: 144–148

    Article  CAS  PubMed  Google Scholar 

  55. Uphoff CC, MacLeod RAF, Denkmann SA, Golub TR, Borkhardt A, Janssen JWG, Drexler HG . Occurrence of TEL-AML1 fusion resulting from t(12;21) in human early B-lineage leukemia cell lines Leukemia 1997 11: 441–447

    Article  CAS  PubMed  Google Scholar 

  56. Gray BA, Bent-Williams A, Wadsworth J, Maiese RL, Bhatia A, Zori RT . Fluorescent in situ hybridization assessment of the telomeric regions of jumping translocations in a case of aggressive B-cell non-Hodgkin lymphoma Cancer Genet Cytogenet 1997 98: 20–27

    Article  CAS  PubMed  Google Scholar 

  57. Vermeesch JR, Petit P, Speleman F, Devriendt K, Fryns JP, Marynen P . Interstitial telomeric sequences at the junction site of a jumping translocation Hum Genet 1997 99: 735–737

    Article  CAS  PubMed  Google Scholar 

  58. Andreasson P, Hoglund M, Jonson T, Bekassy A, Mitelman F, Johansson B . Molecular characterization of jumping translocations reveals spatial and temporal breakpoint heterogeneity Leukemia 1998 12: 1411–1416

    Article  CAS  PubMed  Google Scholar 

  59. Joos S, Kupper M, Ohl S, von Bonin F, Mechtersheimer G, Bentz M, Marynen P, Moller P, Pfreundschuh M, Trumper L, Lichter P . Genomic imbalances including amplification of the tyrosine kinase gene JAK2 in CD30+ Hodgkin cells Cancer Res 2000 60: 549–552

    CAS  PubMed  Google Scholar 

  60. Mark Z, Toren A, Amariglio N, Schuby G, Brok-Simoni F, Rechavi G . Instability of nucleotide repeats in Hodgkin's disease Am J Hematol 1998 57: 148–152

    Article  CAS  PubMed  Google Scholar 

  61. Fonatsch C, Gradl G, Rieder H, Tesch H . Chromosomal in situ hybridization of a Hodgkin's disease-derived cell line (L540) using DNA probes for TCRA, TCRB, MET, and rRNA Hum Genet 1990 84: 427–434

    Article  CAS  PubMed  Google Scholar 

  62. Kaplan FS, Murray J, Sylvester J, Gonzalez IL, O'Connor P, Doering JL, Muenke M, Emanuel BS, Zasloff MA . The topographic organization of repetitive DNA in the human nucleolus Genomics 1993 15: 123–132

    Article  CAS  PubMed  Google Scholar 

  63. Schmickel RD . The molecular organization of the human ribosomal gene Chrom Today 1987 9: 242–251

    Article  Google Scholar 

  64. Bostock CJ . Mechanisms of DNA sequence amplification and their evolutionary consequences Phil Trans Roy Soc Lond B Biol Sci 1986 312: 261–273

    Article  CAS  Google Scholar 

  65. St Ruf C, Gerbault-Seureau M, Viegas-Pequinot E, Alfani B, Clementi M, Dutrillaux B, Carloni G . Co-amplification of transcriptionally active epidermal growth factor receptor and ribosomal genes in a human hepatoma cell line Li7A Oncogene 1992 7: 1557–1565

    Google Scholar 

  66. Farrell SA, Winsor EJ, Markovic VD . Moving satellites and unstable chromosome translocations: clinical and cytogenetic implications Am J Med Genet 1993 46: 715–720

    Article  CAS  PubMed  Google Scholar 

  67. Tugendreich S, Boguski MS, Seldin MS, Hieter P . Linking yeast genetics to mammalian genomes: identification and mapping of the human homolog of CDC27 via the expressed sequence tag (EST) data base Proc Natl Acad Sci USA 1993 90: 10031–10035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kuo KW, Sheu HM, Huang YS, Leung WC . Expression of transposon LINE-1 is relatively human-specific and function of the transcripts may be proliferation-essential Biochem Biophys Res Commun 1998 253: 566–570

    Article  CAS  PubMed  Google Scholar 

  69. Florl AR, Lower R, Schmitz-Dräger BJ, Schultz WA . DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas Br J Cancer 1999 80: 1312–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Montagna M, Santacatterina M, Torri A, Menin C, Zullato D, Chieco-Bianchi L, D'Andrea E . Identification of a 3 kb Alu-mediated BRCA1 gene rearrangement in two breast/overian cancer families Oncogene 1999 18: 4160–4165

    Article  CAS  PubMed  Google Scholar 

  71. Freeman J, Kellock DB, Yu CC, Crocker J, Levison DA, Hall PA . Proliferating cell nuclear antigen (PCNA) and nucleolar organiser regions in Hodgkin's disease: correlation with morphology J Clin Pathol 1993 46: 446–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mamaev NN, Medvedeva NV, Shust VF, Markochev AB, Pasternak ND . Nucleoli and AgNOR in Hodgkin's disease Mol Pathol 1997 50: 149–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Voit R, Hoffmann M, Grummt I . Phosphorylation by G1-specific cdk-cyclin complexes activates the nucleolar transcription factor UBF EMBO J 1999 18: 1891–1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Budde A, Grummt I . p53 represses ribosomal gene transcription Oncogene 1999 18: 1119–1124

    Article  CAS  PubMed  Google Scholar 

  75. Roth J, Daus H, Trümper L, Gause A, Salamon-Looijen M, Pfreundschuh M . Detection of immunoglobulin heavy-chain rearrangement at the single cell level in malignant lymphomas: no rearrangement is found in Hodgkin and Reed–Sternberg cells Int J Cancer 1995 57: 799–804

    Article  Google Scholar 

  76. Weber-Matthiesen K, Deerberg J, Poetsch M, Grote W, Schlegelberger B . Numerical chromosome aberrations are present within the CD30+ Hodgkin and Reed–Sternberg cells in 100% of analyzed cases of Hodgkin's disease Blood 1995 86: 1464–1468

    CAS  PubMed  Google Scholar 

  77. Hsu PL, Xie SS, Hsu SM . Absence of T-cell- and B-cell-specific transcription factors TCF-1, GATA-3, and BSAP in Hodgkin's Reed-Sternberg cells Lab Invest 1996 74: 395–405

    CAS  PubMed  Google Scholar 

  78. MacLeod RAF, Drexler HG . Characterization and authentication. In: Masters JRW, Palsson B (eds) Human Cell Culture, III Leukemia and Lymphoma Cell Lines Kluwer: Dordrecht (in press)

  79. Marini P, MacLeod RAF, Treuner C, Bruchelt G, Böhm W, Wolburg H, Schweizer P, Girgert R . SiMa, a new neuroblastoma cell line combining poor prognostic cytogenetic markers with high adrenergic differentiation Cancer Genet Cytogenet 1999 112: 161–164

    Article  CAS  PubMed  Google Scholar 

  80. Drexler HG, Fombonne S, Matsuo Y, Hu ZB, Hamaguchi H, Uphoff CC . p53 alterations in human leukemia–lymphoma cell lines: in vitro artifact or prerequisite for cell immortalization? Leukemia 2000 14: 198–206

    Article  CAS  PubMed  Google Scholar 

  81. Drexler HG . The Leukemia–Lymphoma Cell Lines FactsBook Academic Press: London 2000 (in press

  82. Drexler HG, Dirks WG, MacLeod RAF . False hematopoietic cell lines: cross-contaminations and misinterpretations Leukemia 1999 13: 1601–1607

    Article  CAS  PubMed  Google Scholar 

  83. Jacky P . Fragile X and other heritable fragile sites on human chromosomes. In: Barch MJ (ed) The ACT Cytogenetics Laboratory Manual, 2nd edn Raven Press: New York 1991 489–522

    Google Scholar 

  84. Hilliker C, Delabie J, Spieleman F, Bilbe G, Brüggen J, Vanleuven F, Van den Berghe H . Localization of the gene (RSN) coding for restin, a marker for Reed–Sternberg cells in Hodgkin's disease, to human chromosome band 12q24.3 and YAC cloning of the locus Cytogenet Cell Genet 1994 65: 172–176

    Article  CAS  PubMed  Google Scholar 

  85. Zani VJ, Asou N, Jadayel D, Heward JM, Shipley J, Nacheva E, Takasuki K, Catovsky D, Dyer MJS . Molecular cloning of complex chromosomal translocation t(8;14;12)(q24.1;q32.3;q24.1) in a Burkitt lymphoma cell line defines a new gene (BCL7A) with homology to caldesmon Blood 1996 87: 3124–3134

    CAS  PubMed  Google Scholar 

  86. Landsvater RM, de Wit MJ, Peterson LF, Sinke RJ, Geurts van Kessel A, Lips CJ, Hoppener JW . Exclusion of the nuclear factor-κ B3 (REL A) gene as candidate for the multiple endocrine neoplasia type 1 (MEN 1) gene Biochem Mol Med 1997 60: 76–79

    Article  CAS  PubMed  Google Scholar 

  87. Liptay S, Schmid RM, Perkins ND, Melzer P, Altherr MR, McPherson JD, Wasmuth JJ, Nabel GJ . Related subunits of NFκB map to two distinct loci associated with translocations in leukemia Genomics 1992 13: 287–292

    Article  CAS  PubMed  Google Scholar 

  88. Van Leuven F, Torrekens S, Moechars D, Hilliker C, Buellens M, Bollen M, Delabie J . Molecular cloning of a gene on chromosome 19q12 coding for a novel intracellular protein: analysis of expression in human and mouse tissues and in human tumor cells, particularly Reed–Sternberg cells in Hodgkin's disease Genomics 1998 54: 511–520

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

In addition to those donating probes, the authors wish to thank Ms Elke Petersen for artwork and Ms Ulrike Nolte for technical assistance. We also thank Dr Stefan Joos for commenting on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacLeod, R., Spitzer, D., Bar-Am, I. et al. Karyotypic dissection of Hodgkin's disease cell lines reveals ectopic subtelomeres and ribosomal DNA at sites of multiple jumping translocations and genomic amplification. Leukemia 14, 1803–1814 (2000). https://doi.org/10.1038/sj.leu.2401894

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401894

Keywords

This article is cited by

Search

Quick links