Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Molecular Cytogenetics

The PEBP2β/CBFβ-SMMHC chimeric protein is localized both in the cell membrane and nuclear subfractions of leukemic cells carrying chromosomal inversion 16

Abstract

The chromosomal inversion (16)(p13q22), which is associated with the M4-eosinophilia subtype of human acute myeloid leukemia, causes the fusion of two distinct genes. The polypeptide encoded by the chimeric gene, PEBP2β/CBFβ-SMMHC, retains the ability to interact with, and dominantly interfere with the function of proteins possessing the Runt homology domain. The Runt protein homologs constitute the DNA binding subunit of the PEBP2/CBF transcription factor. We examined the subcellular localization of PEBP2β/CBFβ-SMMHC, as well as that of Runt protein homologs in leukemic cells carrying inversion 16 by immunoblot analysis. A significant amount of the PEBP2β/CBFβ-SMMHC protein was recovered from the nuclear fraction along with the Runt protein homologs. Furthermore, some of both polypeptides was retained in the DNA pellet that represents the material remaining after extraction of nuclear fraction with high salt. These observations suggest that the so-called dominant interfering effect of PEBP2β/CBFβ-SMMHC on PEBP2/CBF occurs inside the nucleus. In addition, we could detect PEBP2β/CBFβ-SMMHC in the cytoplasmic membrane fraction as well. The function of this membrane-located PEBP2β/CBFβ-SMMHC, if any, appears to be unrelated to that of Runt protein homologs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Liu P, Tarlé SA, Hajra A, Claxton DF, Marlton P, Freedman M, Siciliano MJ, Collins FS . Fusion between transcription factor CBFβ/PEBP2β and a myosin heavy chain in acute myeloid leukemia Science 1993 261: 1041–1044

    Article  CAS  Google Scholar 

  2. Claxton DF, Liu P, Hsu HB, Marlton P, Hester J, Collins F, Deisseroth AB, Rowley JD, Siciliano MJ . Detection of fusion transcripts generated by the inversion 16 chromosome in acute myelogenous leukemia Blood 1994 83: 1750–1756

    CAS  PubMed  Google Scholar 

  3. Liu PP, Hajra A, Wijmenga C, Collins FS . Molecular pathogenesis of the chromosome 16 inversion in the M4Eo subtype of acute myeloid leukemia Blood 1995 85: 2289–2302

    CAS  PubMed  Google Scholar 

  4. Ogawa E, Inuzuka M, Maruyama M, Satake M, Naito-Fujimoto M, Ito Y, Shigesada K . Molecular cloning and characterization of PEBP2β, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2α Virology 1993 194: 314–331

    Article  CAS  Google Scholar 

  5. Wang S, Wang Q, Crute BE, Melnikova IN, Keller SR, Speck NA . Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor Mol Cell Biol 1993 13: 3324–3339

    Article  CAS  Google Scholar 

  6. Bae SC, Yamaguchi-Iwai Y, Ogawa E, Maruyama M, Inuzuka M, Kagoshima H, Shigesada K, Satake M, Ito Y . Isolation of PEBP2αB cDNA representing the mouse homolog of human acute myeloid leukemia gene, AML1 Oncogene 1993 8: 809–814

    CAS  PubMed  Google Scholar 

  7. Kagoshima H, Shigesada K, Satake M, Ito Y, Miyoshi H, Ohki M, Pepling M, Gergen P . The Runt domain identifies a new family of heteromeric transcriptional regulators Trends Genet 1993 9: 338–341

    Article  CAS  Google Scholar 

  8. Meyers S, Downing JR, Hiebert SW . Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein–protein interactions Mol Cell Biol 1993 13: 6336–6345

    Article  CAS  Google Scholar 

  9. Nucifora G, Rowley JD . AML1 and the 8;21 and 3;21 translocations in acute and chronic myeloid leukemia Blood 1995 86: 1–14

    CAS  PubMed  Google Scholar 

  10. Ito Y . Structural alterations in the transcription factor PEBP2/CBF linked to four different types of leukemia J Cancer Res Clin Oncol 1996 122: 266–274

    Article  CAS  Google Scholar 

  11. Look AT . Oncogenic transcription factors in the human acute leukemias Science 1997 278: 1059–1064

    Article  CAS  Google Scholar 

  12. Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M . t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1 Proc Natl Acad Sci USA 1991 88: 10431–10434

    Article  CAS  Google Scholar 

  13. Erickson P, Gao J, Chang KS, Look T, Whisenant E, Raimondi S, Lasher R, Trujillo J, Rowley J, Drabkin H . Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt Blood 1992 80: 1825–1831

    CAS  PubMed  Google Scholar 

  14. Miyoshi H, Kozu T, Shimizu K, Enomoto K, Maseki N, Kaneko Y, Kamada N, Ohki M . The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript EMBO J 1993 12: 2715–2721

    Article  CAS  Google Scholar 

  15. Liu P, Seidel N, Bodine D, Speck N, Tarlé S, Collins FS . Acute myeloid leukemia with inv(16) produces a chimeric transcription factor with a myosin heavy chain tail CSH Symp Quant Biol 1994 59: 547–553

    Article  CAS  Google Scholar 

  16. Cao W, Adya N, Britos-Bray M, Liu PP, Friedman AD . The core binding factor (CBF) α interaction domain and the smooth muscle myosin heavy chain (SMMHC) segment of CBFβ-SMMHC are both required to slow cell proliferation J Biol Chem 1998 273: 31534–31540

    Article  CAS  Google Scholar 

  17. Kanno Y, Kanno T, Sakakura C, Bae S-C, Ito Y . Cytoplasmic sequestration of the polyomavirus enhancer binding protein 2 (PEBP2)/core binding factor α (CBFα) subunit by the leukemia-related PEBP2/CBFβ-SMMHC fusion protein inhibits PEBP2/CBF-mediated transactivation Mol Cell Biol 1998 18: 4252–4261

    Article  CAS  Google Scholar 

  18. Castilla LH, Wijmenga C, Wang Q, Stacy T, Speck NA, Eckhaus M, Marín-Padilla M, Collins FS, Wynshaw-Boris A, Liu PP . Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked-in leukemia gene CBFB-MYH11 Cell 1996 87: 687–696

    Article  CAS  Google Scholar 

  19. Adya N, Stacy T, Speck NA, Liu PP . The leukemic protein core binding factor β (CBFβ)-smooth-muscle myosin heavy chain sequesters CBFα2 into cytoskeletal filaments and aggregates Mol Cell Biol 1998 18: 7432–7443

    Article  CAS  Google Scholar 

  20. Asou H, Tashiro S, Hamamoto K, Otsuji A, Kita K, Kamada N . Establishment of a human acute myeloid leukemia cell line (Kasumi-1) with 8;21 chromosome translocation Blood 1991 77: 2031–2036

    CAS  PubMed  Google Scholar 

  21. Yanagisawa K, Horiuchi T, Fujita S . Establishment and characterization of a new human leukemia cell line derived from M4Eo Blood 1991 78: 451–457

    CAS  PubMed  Google Scholar 

  22. Okada H, Watanabe T, Niki M, Takano H, Chiba N, Yanai N, Tani K, Hibino H, Asano S, Mucenski ML, Ito Y, Noda T, Satake M . The extracellular signal-regulated kinase pathway phosphorylates AML1, an acute myeloid leukemia gene product, and potentially regulates its transactivation ability Oncogene 1998 17: 2287–2293

    Article  CAS  Google Scholar 

  23. Tanaka Y, Fujii M, Hayashi K, Chiba N, Akaishi T, Shineha R, Nishihira T, Satomi S, Ito Y, Watanabe T, Satake M . The chimeric protein, PEBP2β/CBFβ-SMMHC, disorganizes cytoplasmic stress fibers and inhibits transcriptional activation Oncogene 1998 17: 699–708

    Article  CAS  Google Scholar 

  24. Meyers S, Lenny N, Hiebert SW . The t(8;21) fusion protein interferes with AML-1B-dependent transcriptional activation Mol Cell Biol 1995 15: 1974–1982

    Article  CAS  Google Scholar 

  25. Chiba N, Watanabe T, Nomura S, Tanaka Y, Minowa M, Niki M, Kanamaru R, Satake M . Differentiation dependent expression and distinct subcellular localization of the protooncogene product, PEBP2β/CBFβ, in muscle development Oncogene 1997 14: 2543–2552

    Article  CAS  Google Scholar 

  26. Mukouyama Y, Hara T, Xu M, Tamura K, Donovan PJ, Kim H, Kogo H, Tsuji K, Nakahata T, Miyajima A . In vitro expansion of murine multipotential hematopoietic progenitors from the embryonic aorta-gonad-mesonephros region Immunity 1998 8: 105–114

    Article  CAS  Google Scholar 

  27. Zeng C, van Wijnen AJ, Stein JL, Meyers S, Sun W, Shopland L, Lawrence JB, Penman S, Lian JB, Stein GS, Hiebert SW . Identification of a nuclear matrix targeting signal in the leukemia and bone-related AML/CBF-α transcription factors Proc Natl Acad Sci USA 1997 94: 6746–6751

    Article  CAS  Google Scholar 

  28. Erickson PF, Dessev G, Lasher RS, Philips G, Robinson M, Drabkin HA . ETO and AML1 phosphoproteins are expressed in CD34+ hematopoietic progenitors: implications for t(8;21) leukemogenesis and monitoring residual desease Blood 1996 88: 1813–1823

    CAS  PubMed  Google Scholar 

  29. Tanaka T, Kurokawa M, Ueki K, Tanaka K, Imai Y, Mitani K, Okazaki K, Sagata N, Yazaki Y, Shibata Y, Kadowaki T, Hirai H . The extracellular signal-regulated kinase pathway phosphorylates AML1, an acute myeloid leukemia gene product, and potentially regulates its transactivation ability Mol Cell Biol 1996 16: 3967–3979

    Article  CAS  Google Scholar 

  30. Cao W, Britos-Bray M, Claxton DF, Kelley CA, Speck NA, Liu PP, Friedman AD . CBFβ-SMMHC, expressed in M4Eo AML, reduced CBF DNA-binding and inhibited the G1 to S cell cycle transition at the restriction point in myeloid and lymphoid cells Oncogene 1997 15: 1315–1327

    Article  CAS  Google Scholar 

  31. Kogan SC, Lagasse E, Atwater S, Bae S-C, Weissman I, Ito Y, Bishop JM . The PEBP2βMYH11 fusion created by Inv(16)(p13;q22) in myeloid leukemia impairs neutrophil maturation and contributes to granulocytic dysplasia Proc Natl Acad Sci USA 1998 95: 11863–11868

    Article  CAS  Google Scholar 

  32. Claxton D, Xie Q-S, Patel S, Deisseroth AB, Kornblau S . The gene product of CBFB-MYH11 Leukemia 1996 10: 1479–1485

    CAS  PubMed  Google Scholar 

  33. Liu PP, Wijmenga C, Hajra A, Blake TB, Kelley CA, Adelstein RS, Bagg A, Rector J, Cotelingam J, Willman CL, Collins FS . Identification of the chimeric protein product of the CBFB-MYH11 fusion gene in inv(16) leukemia cells Genes Chromos Cancer 1996 16: 77–87

    Article  Google Scholar 

Download references

Acknowledgements

We thank T Suzuki for technical advice on immunofluorescence and Ms I Imamura and Ms A Yao for secretarial assistance. This work was supported in part by research grants from the Ministry of Education, Science, Sports and Culture and the Ministry of Health and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanto, S., Chiba, N., Tanaka, Y. et al. The PEBP2β/CBFβ-SMMHC chimeric protein is localized both in the cell membrane and nuclear subfractions of leukemic cells carrying chromosomal inversion 16. Leukemia 14, 1253–1259 (2000). https://doi.org/10.1038/sj.leu.2401821

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401821

Keywords

Search

Quick links