Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Regulation of granulopoiesis by transcription factors and cytokine signals

Abstract

The development of mature granulocytes from hematopoietic precursor cells is controlled by a myriad of transcription factors which regulate the expression of essential genes, including those encoding growth factors and their receptors, enzymes, adhesion molecules, and transcription factors themselves. In particular, C/EBPα, PU.1, CBF, and c-Myb have emerged as critical players during early granulopoiesis. These transcription factors interact with one another as well as other factors to regulate the expression of a variety of genes important in granulocytic lineage commitment. An important goal remains to understand in greater detail how these various factors act in concert with signals emanating from cytokine receptors to influence the various steps of maturation, from the pluripotent hematopoietic stem cell, to a committed myeloid progenitor, to myeloid precursors, and ultimately to mature granulocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ness SA, Kowenz-Leutz E, Casini T, Graf T, Leutz A . Myb and NF-M: combinatorial activators of myeloid genes in heterologous cell types Genes Dev 1993 7: 749–759

    CAS  PubMed  Google Scholar 

  2. Suzow J, Friedman AD . The murine myeloperoxidase promoter contains several functional elements – one element binds a cell type-restricted transcription factor, myeloid nuclear factor 1 (MyNF1) Mol Cell Biol 1993 13: 2141–2151

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Nuchprayoon I, Meyers S, Scott LM, Suzow J, Hiebert S, Friedman AD . PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2b/CBFb oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells Mol Cell Biol 1994 14: 5558–5568

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang D-E, Hetherington CJ, Chen H-M, Tenen DG . The macrophage transcription factor PU.1 directs tissue-specific expression of the M-CSF receptor Mol Cell Biol 1994 14: 373–381

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang D-E, Fujioka K-I, Hetherington CJ, Shapiro LH, Chen H-M, Look AT, Tenen DG . Identification of a region which directs monocytic activity of the colony-stimulating factor 1 (macrophage colony-stimulating factor) receptor promoter and binds PEBP2/CBF (AML1) Mol Cell Biol 1994 14: 8085–8095

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ahne B, Stratling WH . Characterization of a myeloid-specific enhancer of the chicken lysozyme gene J Biol Chem 1994 269: 17794–17801

    CAS  PubMed  Google Scholar 

  7. Hohaus S, Petrovick MS, Voso MT, Sun Z, Zhang D-E, Tenen DG . PU.1 (Spi-1) and C/EBPa regulate expression of the granulocyte–macrophage colony-stimulating factor receptor a gene Mol Cell Biol 1995 15: 5830–5845

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Shapiro LH . Myb and Ets proteins cooperate to transactivate an early myeloid gene J Biol Chem 1995 270: 8763–8771

    CAS  PubMed  Google Scholar 

  9. Oelgeschläger M, Nuchprayoon I, Lüscher B, Friedman AD . C/EBP, c-Myb, and PU.1 cooperate to regulate the neutrophil elastase promoter Mol Cell Biol 1996 16: 4717–4725

    PubMed  PubMed Central  Google Scholar 

  10. Zhang D-E, Hetherington CJ, Meyers S, Rhoades KL, Larson CJ, Chen H-M, Hiebert SW, Tenen DG . CCAAT/enhancer binding protein (C/EBP) and AML1 (CBFa2) synergistically activate the macrophage-colony stimulating factor receptor promoter Mol Cell Biol 1996 16: 1231–1240

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ford AM, Bennett CA, Healy LE, Towatari M, Greaves MF, Enver T . Regulation of the myeloperoxidase enhancer binding proteins PU.1, C/EBPα, β, and δ during granulocyte-lineage specification Proc Natl Acad Sci USA 1996 93: 10838–10843

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Smith LT, Hohaus S, Gonzalez DA, Dziennis SE, Tenen DG . PU.1 (Spi-1) and C/EBP alpha regulate the granulocyte colony-stimulating factor receptor promoter in myeloid cells Blood 1996 88: 1234–1247

    CAS  PubMed  Google Scholar 

  13. Heydemann A, Juan G, Hennessy K, Parmacek MS, Simon MC . The myeloid-specific c-fes promoter is regulated by Sp1, PU.1, and a novel transcription factor Mol Cell Biol 1996 16: 1676–1686

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Nuchprayoon I, Simkevich CP, Luo M, Rosmarin AG, Friedman AD . An enhancer located between the neutrophil elastase and proteinase 3 promoters is activated by Sp1 and an ets factor J Biol Chem 1999 274: 1085–1091

    CAS  PubMed  Google Scholar 

  15. Yamanaka R, Kim GD, Radomska HS, Lekstrom-Himes J, Smith LT, Antonson P, Tenen DG, Xanthopolous KG . CCAAT/enhancer binding protein epsilon is preferentially up-regulated during granulocytic differentiation and its functional versatility is determined by alternative use of promoters and differential splicing Proc Natl Acad Sci USA 1997 94: 6462–6467

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yamanaka R, Barlow C, Lekstrom-Himes J, Castilla LH, Liu PP, Eckhaus M, Decker T, Wynshaw-Boris A, Xanthopolous KG . Impaired granulopoiesis, myelodysplasia, and early lethality in CCAAT/enhancer binding protein epsilon-deficient mice Proc Natl Acad Sci USA 1997 94: 13187–13192

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shen W-F, Largman C, Lowney P, Corral JC, Detmer K, Hauser CA, Simonitch TA, Hack FM, Lawrence HJ . Lineage-restricted expression of homeobox-containing genes in human hematopoietic cell lines Proc Natl Acad Sci USA 1989 86: 8536–8540

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lowney P, Corral J, Detmer K, LeBeau MM, Deaven L, Lawrence HJ, Largman C . A human Hox 1 homeobox gene exhibits myeloid-specific expression of alternative transcripts in human hematopoietic cells Nucleic Acids Res 1991 19: 3443–3449

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Savageau G, Lansdorp PM, Eaves CL, Hogge DE, Dragowska WH, Reid DS, Largman C, Lawrence HJ, Humphries RK . Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells Proc Natl Acad Sci USA 1994 91: 12223–12227

    Google Scholar 

  20. Frazier GC, Patmasiriwat P, Zhang X, Saunders GF . Expression of the tumor suppressor gene WT1 in both human and mouse bone marrow Blood 1995 86: 4704–4706

    Google Scholar 

  21. Inoue K, Sugiyama H, Ogawa H, Nakagawa M, Yamagami T, Miwa H, Kita K, Hiraoka A, Masaoka T, Nasu K, Kyo T, Dohy H, Nakauchi H, Ishidate T, Akiyama T, Kishimoto T . WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia Blood 1994 84: 3071–3079

    CAS  PubMed  Google Scholar 

  22. Graves B, Johnson PF, McKnight SL . Homologous recognition of a promoter domain common to the MSV LTR and the HSV tk gene Cell 1986 44: 565–576

    CAS  PubMed  Google Scholar 

  23. Johnson PF, Landschulz WH, Graves BJ, McKnight SL . Identification of a rat liver nuclear protein that binds to the enhancer core element of three animal viruses Genes Dev 1987 1: 133–146

    CAS  PubMed  Google Scholar 

  24. Landschulz WH, Johnson PF, Adashi EY, Graves BJ, McKnight SL . Isolation of a recombinant copy of the gene encoding C/EBP Genes Dev 1988 2: 786–800

    CAS  PubMed  Google Scholar 

  25. Landschulz WH, Johnson PF, McKnight SL . The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins Science 1988 240: 1759–1764

    CAS  PubMed  Google Scholar 

  26. Landschulz WH, Johnson PF, McKnight SL . The DNA binding domain of the rat liver protein C/EBP is bipartite Science 1989 246: 1681–1688

    Google Scholar 

  27. Friedman AD, Landschulz WH, McKnight SL . CCAAT/enhancer binding protein activates the promoter of the serum albumin gene in cultured hepatoma cells Genes Dev 1989 3: 1314–1322

    CAS  PubMed  Google Scholar 

  28. Friedman AD, McKnight SL . Identification of two polypeptide segments of CCAAT/enhancer-binding protein required for transcriptional activation of the serum albumin gene Genes Dev 1990 4: 1416–1426

    CAS  PubMed  Google Scholar 

  29. Birkenmeier EH, Gwyenn B, Howard S, Jerry J, Gordon JI, Landschulz WH, McKnight SL . Tissue-specific expression, developmental regulation, and genetic mapping of the gene encoding CCAAT/enhancer binding protein Genes Dev 1989 3: 1146–1156

    CAS  PubMed  Google Scholar 

  30. Chandrasekaran C, Gordon JI . Cell lineage-specific and differentiation-dependent patterns of CCAAT/enhancer binding protein alpha expression in the gut epithelium of normal and transgenic mice Proc Natl Acad Sci USA 1993 90: 8871–8875

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Scott LM, Civin CI, Rorth P, Friedman AD . A novel temporal pattern of three C/EBP family members in differentiating myelomonocytic cells Blood 1992 80: 1725–1735

    CAS  PubMed  Google Scholar 

  32. Muller C, Kowenz-Leutz E, Grieser-Ada S, Graf T, Leutz A . NF-M (chicken C/EBPβ) induces eosinophilic differentiation and apoptosis in a hematopoietic progenitor cell line EMBO J 1995 14: 6127–6135

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Radomska HS, Huettner CS, Zhang P, Tenen DG . CCAAT/enhancer binding protein a is a regulatory switch sufficient for induction of granulocytic differentiation from bipotential myeloid cells Mol Cell Biol 1998 18: 4301–4314

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nerlov C, McNagny KM, Doderlein G, Kowenz-Leutz E, Graf T . Distinct C/EBP functions are required for eosinophil lineage commitment and maturation Genes Dev 1998 12: 2413–2422

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang X, Scott E, Sawyers CL, Friedman AD . C/EBPα by-passes G-CSF signals to rapidly induce PU.1 gene expression, stimulate granulocytic differentiation, and limit proliferation in 32D cl3 myeloblasts Blood 1999 94: 560–571

    CAS  PubMed  Google Scholar 

  36. Zhang D-E, Zhang P, Wang N-D, Hetherington CJ, Darlington GJ, Tenen DG . Absence of G-CSF signaling and neutrophil development in CCAAT enhancer binding protein α-deficient mice Proc Natl Acad Sci USA 1997 94: 569–574

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Weiss MJ, Keller G, Orkin SH . Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells Genes Dev 1994 8: 1184–1197

    CAS  PubMed  Google Scholar 

  38. Kulessa H, Frampton J, Graf T . GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts Genes Dev 1995 9: 1250–1262

    CAS  PubMed  Google Scholar 

  39. Screpanti I, Romani L, Musiani P, Modesti A, Fattori E, Lazzaro D, Sellitto C, Scarpa S, Bellavia D, Lattanzio G, Bistoni F, Frati L, Cortese R, Gulino A, Ciliberto G, Coslantini F, Poli V . Lymphoproliferative disorder and imbalanced T-helper response in C/EBPb-deficient mice EMBO J 1995 14: 1932–1941

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tanaka T, Akira S, Yoshida M, Umemoto Y, Yoneda N, Shirafuji H, Suematsu S, Yoshida N, Kishimoto T . Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages Cell 1995 80: 353–361

    CAS  PubMed  Google Scholar 

  41. Chen X, Liu W, Ambrosino C, Ruocco MR, Poli V, Romani L, Quinto I, Barbieri S, Holmes KL, Venuta S, Scala G . Impaired generation of bone marrow B lymphocytes in mice deficient in C/EBPα Blood 1997 90: 156–164

    CAS  PubMed  Google Scholar 

  42. Lee Y-H, Williams SC, Baer M, Sterneck E, Gonzalez FJ, Johnson PF . The ability of C/EBPβ but not C/EBPα to synergize with an Sp1 protein is specified by the leucine zipper and activation domain Mol Cell Biol 1997 17: 2038–2047

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Roman C, Platero JS, Shuman JD, Calame K . Ig/EBP-1: a ubiquitously expressed immunoglobulin enhancer binding protein that is similar to C/EBP and heterdimerizes with C/EBP Genes Dev 1990 4: 1404–1415

    CAS  PubMed  Google Scholar 

  44. Cooper C, Henderson A, Artandi S, Avitahl N, Calame K . Ig/EBP (C/EBP gamma) is a transdominant negative inhibitor of C/EBP family transcriptional activators Nucleic Acids Res 1995 23: 4371–4377

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Antonson P, Stellan B, Yamanaka R, Xanthopoulos KG . A novel human CCAAT/enhancer binding protein gene, C/EBP epsilon, is expressed in cells of lymphoid and myeloid lineages and is localized on chromosome 14q11.2 close to the T cell receptor alpha/delta locus Genomics 1996 35: 30–38

    CAS  PubMed  Google Scholar 

  46. Chumakov AM, Grillier I, Chumakov E, Chih D, Slater J, Koeffler HP . Cloning of the novel human myeloid-cell-specific C/EBP-epsilon transcription factor Mol Cell Biol 1997 17: 1375–1386

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Leckstrom-Himes JA, Dorman SE, Kopar P, Holland SM, Gallin JI . Neutrophil-specific granule deficiency results from a novel mutation with loss of function of the transcription factor CCAAT/enhancer binding protein ε J Exp Med 1999 189: 1847–1852

    Google Scholar 

  48. Habener JF, Ron D . CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factor C/EBP and LAP functions as a dominant-negative inhibitor of gene transcription Genes Dev 1992 6: 439–453

    PubMed  Google Scholar 

  49. Friedman AD . GADD153/CHOP, a DNA damage-inducible protein, reduced CCAAT/enhancer binding protein activities and increased apoptosis in 32D cl3 myeloid cells Cancer Res 1996 56: 3250–3256

    CAS  PubMed  Google Scholar 

  50. Klemsz MJ, McKercher SR, Celada A, Van Beveran C, Maki RA . The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene Cell 1990 61: 113–124

    CAS  PubMed  Google Scholar 

  51. Ray-Gallet D, Mao C, Tavitian A, Moreau-Gachelin F . DNA binding specificities of Spi-1/PU.1 and Spi-B transcription factors and identification of a Spi-1/Spi-B binding site in the c-fes/c-fps promoter Oncogene 1995 11: 303–313

    CAS  PubMed  Google Scholar 

  52. Pongubala JMR, Van Beveren C, Nagulapalli S, Klemsz MJ, NcKercher SR, Maki RA, Atchison ML . Effect of PU.1 phosphorylation on interaction with NF-EM5 and transcriptional activation Science 1993 259: 1622–1625

    CAS  PubMed  Google Scholar 

  53. Mao C, Ray-Gallet D, Tavitian A, Moreau-Gachelin F . Differential phosphorylation of Spi-B and Spi-1 transcription factors Oncogene 1996 12: 863–873

    CAS  PubMed  Google Scholar 

  54. Celada A, Borras FE, Soler C, Lloberas J, Klemsz M, van Beveren C, McKercher S, Maki RA . The transcription factor PU.1 is involved in macrophage proliferation J Exp Med 1996 184: 61–69

    CAS  PubMed  Google Scholar 

  55. Eisenbeis CF, Singh H, Storb U . Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator Genes Dev 1995 9: 1377–1387

    CAS  PubMed  Google Scholar 

  56. Lodie TA, Savedra R Jr, Golenbock DT, Van Beveren CP, Maki RA, Fenton MJ . Stimulation of macrophages by lipopolysaccharide alters the phosphorylation state, conformation, and function of PU.1 via activation of casein kinase II J Immunol 1997 158: 1848–1856

    CAS  PubMed  Google Scholar 

  57. Klemsz MJ, Maki RA . Activation of transcription by PU.1 requires both acidic and glutamine domains Mol Cell Biol 1996 16: 390–397

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Fisher RC, Olson MC, Pongubala JM, Perkel JM, Atchison ML, Scott EW, Simon MC . Normal myeloid development requires both the glutamine-rich domain and the PEST region of transactivation factor PU.1 but not the potent acidic transactivation domain Mol Cell Biol 1998 18: 4347–4357

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen HM, Zhang P, Voso MT, Hohaus S, Gonzalez DA, Glass CK, Zhang DE, Tenen DG . Neutrophils and monocytes express high levels of PU.1 (Spi-1) but not Spi-B Blood 1995 85: 2918–2928

    CAS  PubMed  Google Scholar 

  60. Voso MT, Burn TC, Wulf G, Lim B, Leone G, Tenen DG . Inhibition of hematopoiesis by competitive binding of transcription factor PU.1 Proc Natl Acad Sci USA 1994 91: 7932–7936

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cheng T, Shen H, Giokas D, Gere J, Tenen DG, Scadden DT . Temporal mapping of gene expression levels during the differentiation of individual primary hematopoietic cells Proc Natl Acad Sci USA 1996 93: 13158–13163

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Nerlov C, Graf T . PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors Genes Dev 1998 12: 2403–2412

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bellon T, Perrotti D, Calabretta B . Granulocytic differentiation of normal hematopoietic precursor cells induced by transcription factor PU.1 correlates with negative regulation of the c-myb promoter Blood 1997 90: 1828–1839

    CAS  PubMed  Google Scholar 

  64. Scott EW, Simon MC, Anastasi J, Singh H . Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages Science 1994 265: 1573–1577

    CAS  PubMed  Google Scholar 

  65. McKercher SR, Torbett BE, Anderson KL, Henkel GW, Vestal DJ, Baribault H, Klemsz M, Feeney AJ, Wu GE, Paige CJ, Maki RA . Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities EMBO J 1996 15: 5647–5658

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Anderson KL, Smith KA, Pio F, Torbett BE, Maki RA . Neutrophils deficient in PU.1 do not terminally differentiate or become functionally competent Blood 1998 92: 1576–1585

    CAS  PubMed  Google Scholar 

  67. DeKoter RP, Walsh JC, Singh H . PU.1 regulates both cytokine-dependent proliferation and differentiation of granulocyte/macrophage progenitors EMBO J 1998 17: 4456–4468

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Anderson KL, Smith KA, Conners K, McKercher SR, Maki RA, Torbett BE . Myeloid development is selectively disrupted in PU.1 null mice Blood 1998 91: 3702–3710

    CAS  PubMed  Google Scholar 

  69. Anderson KL, Smith KA, Perkin H, Hermanson G, Anderson C-G, Jolly DJ, Maki RA, Torbett BE . PU.1 and the granulocyte- and macrophage colony-stimulating factor receptors play distinct roles in late-stage myeloid cell differentiation Blood 1999 94: 2310–2318

    CAS  PubMed  Google Scholar 

  70. Henkel GW, McKercher SR, Leenan PJM, Maki RA . Commitment to the monocytic lineage occurs in the absence of the transcription factor PU.1 Blood 1999 93: 2849–2858

    CAS  PubMed  Google Scholar 

  71. Lichanska AM, Browne CM, Henkel GW, Murphy KM, Ostrowski MC, McKercher SR, Maki RA, Hume DA . Differentiation of the mononuclear phagocyte system during embryogenesis: the role of transcription factor PU.1 Blood 1999 94: 127–138

    CAS  PubMed  Google Scholar 

  72. Kamachi Y, Ogawa E, Asano M, Ishida S, Murakami Y, Satake M, Ito Y, Shigesda K . Purification of a mouse nuclear factor that binds to both the A and B cores of the polyomavirus enhancer Mol Cell Biol 1990 64: 4808–4819

    CAS  Google Scholar 

  73. Wang S, Speck NA . Purification of core-binding factor, a protein that binds the conserved core site in murine leukemia virus enhancers Mol Cell Biol 1992 12: 89–102

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Bae S-C, Yamaguchi-Iwai Y, Ogawa E, Maruyama M, Inuzuka M, Kagoshima H, Shigesada K, Satake M, Ito Y . Isolation of PEBP2αB cDNA representing the mouse homolog of human acute myeloid leukemia gene, AML1 Oncogene 1993 8: 809–814

    CAS  PubMed  Google Scholar 

  75. Wang S, Wang Q, Crute BE, Melnikova IN, Keller SR, Speck NA . Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor Mol Cell Biol 1993 13: 3324–3339

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ogawa E, Maruyama M, Kagoshima H, Inuzuka M, Lu J, Satake M, Shigesada K, Ito Y . PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosphila runt gene and the human AML1 gene Proc Natl Acad Sci USA 1993 90: 6859–6863

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ogawa E, Inuzuka M, Maruyamna M, Satake M, Naito-Fujimoto M, Ito Y, Shigesada K . Molecular cloning and characterization of PEBP2β, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2α Virology 1993 194: 314–331

    CAS  PubMed  Google Scholar 

  78. Levanon D, Negreanu V, Bernstein Y, Bar-Am I, Avivi L, Groner Y . AML1, 2 and 3. The human members of the runt domain gene-family Genomics 1994 23: 425–432

    CAS  PubMed  Google Scholar 

  79. Kania MA, Bonner AS, Duffy JB, Gergen JP . The Drosophila segmentation gene runt encodes a novel nuclear regulatory protein that is also expressed in the developing nervous system Genes Dev 1990 4: 1701–1713

    CAS  PubMed  Google Scholar 

  80. Meyers S, Downing JR, Hiebert SW . Identification of AML1 and the (8;21) translocation protein AML1-ETO as sequence specific DNA binding proteins: the runt homology domain is required for DNA binding and protein–protein interactions Mol Cell Biol 1993 13: 6336–6345

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Melnikova IN, Crute BE, Wang S, Speck NA . Sequence specificity of the core-binding factor J Virol 1993 67: 2408–2411

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lenny N, Meyers S, Hiebert SW . Functional domains of the t(8;21) fusion protein, AML1-ETO Oncogene 1995 11: 1761–1769

    CAS  PubMed  Google Scholar 

  83. Crute BE, Lewis AF, Wu Z, Bushweller JH, Speck NA . Biochemical and biophysical properties of the core-binding factor α2 (AML1) DNA-binding domain J Biol Chem 1996 271: 26251–26260

    CAS  PubMed  Google Scholar 

  84. Kanno T, Kanno Y, Chen L-F, Ogawa E, Kim W-Y, Ito Y . Intrinsic transcriptional activation-inhibition domains of the polyomavirus enhancer binding protein 2/core binding factor α subunit revealed in the presence of the β subunit Mol Cell Biol 1998 18: 2444–2454

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Wotton D, Ghysdael J, Wang S, Speck NA, Owen MJ . Cooperative binding of ets-1 and core binding factor to DNA Mol Cell Biol 1994 14: 840–850

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hernandez-Munain C, Krangel MS . Regulation of the T-cell receptor δ enhancer by functional cooperation between c-Myb and core binding factors Mol Cell Biol 1994 14: 473–483

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Sun W, Graves BJ, Speck NA . Transactivation of the moloney murine leukemia virus and T-cell receptor β-chain enhancers by cbf and ets requires intact binding sites for both proteins J Virol 1995 69: 4941–4949

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Giese K, Kingsley C, Kirshner JR, Grosschedl R . Assembly and function of a TCR alpha enhancer complex is dependent on LEF-1-induced DNA bending and multiple protein–protein interactions Genes Dev 1995 9: 995–1008

    CAS  PubMed  Google Scholar 

  89. Britos-Bray M, Friedman AD . Core binding factor cannot synergistically activate the myeloperoxidase proximal enhancer in immature myeloid cells without c-myb Mol Cell Biol 1997 17: 5127–5135

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Petrovick MS, Hiebert SW, Friedman AD, Hetherington CJ, Tenen DG, Zhang D-E . Multiple functional domains of AML1: PU.1 and C/EBPα synergize with different regions of AML1 Mol Cell Biol 1998 18: 3915–3925

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Yagi R, Chen L-F, Shigesada K, Murakami Y, Ito Y . A WW domain-containing Yes-associated protein (YAP) is a novel transcriptional co-activator EMBO J 1999 18: 2551–2562

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kim W-Y, Sieweke M, Ogawa E, Wee H-J, Englmeier U, Graf T, Ito Y . Mutual activation of Ets-1 and AML1 DNA binding by direct interaction of their autoinhibitory domains EMBO J 1999 6: 1609–1620

    Google Scholar 

  93. Aronson BD, Fisher AL, Blechman K, Caudy M, Gergen JP . Groucho-dependent and -independent repression activities of runt domain proteins Mol Cell Biol 1997 17: 5581–5587

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Imai Y, Kurokawa M, Tanaka K, Friedman AD, Ogawa S, Mitani K, Yazaki Y, Hirai H . TLE, the human homolog of groucho, interacts with AML1 and acts as a repressor of AML1-induced transactivation Biochem Biophys Res Commun 1998 252: 582–589

    CAS  PubMed  Google Scholar 

  95. Levanon D, Goldstein RE, Bernstein Y, Tang H, Goldenberg D, Stifani S, Paroush Z, Groner Y . Transcriptional repression by AML1 and LEF-1 is mediated by TLE/groucho corepressors Proc Natl Acad Sci USA 1998 95: 11590–11595

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lutterbach B, Westendorf JJ, Linggi B, Hiebert SW . AML-1, a target of multiple chromosomal translocations in acute leukemia, interacts with mSin3 to repress transcription from the p21/WAF1/CIP1 promoter Blood 1998 92: 508a

    Google Scholar 

  97. Fenrick R, Amann JM, Lutterbach B, Wing L, Westendorf JJ, Downing JR, Hiebert SW . Both TEL and AML-1 contribute repression domains to the t(12;21) fusion protein Mol Cell Biol 1999 19: 6566–6574

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Tanaka T, Kurokawa M, Ueki K, Tanaka K, Imai Y, Mitani K, Okazaki K, Sagata N, Yazaki Y, Shibata Y, Kadowaki T, Hirai H . The extracellular signal-regulated kinase pathway phosphorylates AML1, an acute myeloid leukemia gene product, and potentially regulates its transactivation ability Mol Cell Biol 1996 16: 3967–3979

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Satake M, Inuzuka M, Shigesada K, Oikawa T, Ito Y . Differential expression of subspecies of polyomavirus and murine leukemia virus enhancer core binding protein, PEBP2, in various hematopoietic cells Jpn J Cancer Res 1992 83: 714–722

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Erickson P, Dessev G, Lasher RS, Philips G, Robinson M, Drabkin H . ETO and AML1 phosphoproteins are expressed in CD34+ hematopoietic progenitors: implications for t(8;21) leukemogenesis and monitoring residual disease Blood 1996 88: 1813–1823

    CAS  PubMed  Google Scholar 

  101. Zeng C, van Wijnen AJ, Stein JL, Meyers S, Sun W, Shopland L, Lawrence JB, Penman S, Lian JB, Stein GS, Hiebert SW . Identification of a nuclear matrix targeting signal in the leukemia and bone-related AML/CBF-a transcription factors Proc Natl Acad Sci USA 1998 94: 6746–6751

    Google Scholar 

  102. Corsetti MT, Calabi F . Lineage- and stage-specific expression of runt box polypeptides in primitive and definitive hematopoiesis Blood 1997 89: 2359–2368

    CAS  PubMed  Google Scholar 

  103. North T, Gu T-L, Stacy T, Wang Q, Howard L, Binder M, Marin-Padilla M, Speck NA . Cbfa2 is required for the formation of intraaortic hematopoietic clusters Development 1999 126: 2563–2575

    CAS  PubMed  Google Scholar 

  104. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR . AML-1, the target of multiple chromosomal translocations in human leukemia, is essential for normal murine fetal hematopoiesis Cell 1996 84: 321–330

    CAS  PubMed  Google Scholar 

  105. Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA . Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis Proc Natl Acad Sci USA 1996 93: 3444–3449

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang Q, Stacy T, Miller JD, Lewis AF, Gu T-L, Huang X, Bushweller JH, Bories J-C, Alt FW, Ryan G, Liu PP, Wynshaw-Boris A, Binder M, Marin-Padilla M, Sharpe AH, Speck NA . The CBFβ subunit is essential for CBFa2 (AML1) function in vivo Cell 1996 87: 697–708

    CAS  PubMed  Google Scholar 

  107. Sasaki K, Yagi H, Bronson RT, Tominaga K, Matsunashi T, Deguchi K, Tani Y, Kishimoto T, Komori T . Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor β Proc Natl Acad Sci USA 1996 93: 12359–12363

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Niki M, Okada H, Takano H, Kujo J, Tani K, Hibino H, Asano S, Ito Y, Satake M, Noda T . Hematopoiesis in the fetal liver is impaired by the targeted mutagenesis of the gene encoding a non-DNA binding subunit of the transcription factor, PEBP2/CBF Proc Natl Acad Sci USA 1997 94: 5697–5702

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Cao W, Britos-Bray M, Claxton DF, Kelley CA, Speck NA, Liu PP, Friedman AD . CBFβ-SMMHC, expressed in M4eo AML, reduced CBF DNA-binding and inhibited the G1 to S cell cycle transition at the restriction point in myeloid and lymphoid cells Oncogene 1997 15: 1315–1327

    CAS  PubMed  Google Scholar 

  110. Cao W, Adya N, Britos-Bray M, Liu PP, Friedman AD . The core binding factor α interaction domain and the smooth muscle myosin heavy chain segment of CBFβ-SMMHC are both required to slow cell proliferation J Biol Chem 1998 273: 31534–31540

    CAS  PubMed  Google Scholar 

  111. Klempnauer KH, Sippel AE . The highly conserved amino-terminal region of the protein encoded by the v-myb oncogene functions as a DNA-binding domain EMBO J 1987 6: 2719–2725

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Biedenkapp H, Borgemeyer U, Sippel AE, Kempnauer KH . Viral myb oncogene encodes a sequence-specific DNA-binding activity Nature 1988 335: 835–837

    CAS  PubMed  Google Scholar 

  113. Tanikawa J, Yasukawa T, Enari M, Ogata K, Nishimura Y, Ishii S, Sarai A . Recognition of specific DNA sequences by the c-myb protooncogene product: role of three repeat units in the DNA-binding domain Proc Natl Acad Sci USA 1993 90: 9320–9324

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ogata K, Morikawa S, Nakamura H, Sekikawa A, Saski M, Nagadoi A, Sarai A, Ishii S, Nishimura Y . Solution structure of a specific DNA complex of the myb DNA-binding domain with cooperative recognition helices Cell 1994 79: 639–648

    CAS  PubMed  Google Scholar 

  115. Ogata K, Hojo H, Aimoto S, Nakai T, Nakamura H, Sarai A, Ishii S, Nishimura Y . Solution structure of a DNA-binding unit of myb: a helix–turn–helix-related motif with conserved tryptophans forming a hydrophobic core Proc Natl Acad Sci USA 1992 89: 6428–6432

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Nomura N, Takahashi M, Matsui M, Ishii S, Date T, Sasamoto S, Ishizaki R . Isolation of human cDNA clones of myb-related genes, A-myb and B-myb Nucleic Acids Res 1988 16: 11075–11089

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Trauth K, Mutschler B, Jenkins NA, Gilbert DJ, Copeland NG, Klempnauer KH . Mouse A-myb encodes a transactivator and is expressed in mitotically active cells of the developing CNS, adult tests and B-lymphocytes EMBO J 1994 13: 5994–6005

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Weston K, Bishop MJ . Transcriptional activation by the v-myb oncogene and its cellular progenitor, c-myb Cell 1989 58: 85–93

    CAS  PubMed  Google Scholar 

  119. Sakura H, Kanei-Ishii C, Nagase T, Nakagoshi H, Gonda TJ . Delineation of three functional domains of the transcriptional activator encoded by the c-myb proto-oncogene Proc Natl Acad Sci USA 1989 86: 5758–5762

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Ibanez CE, Lipsick JS . Transactivation of gene expression by v-myb Mol Cell Biol 1990 10: 2285–2293

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Dash AB, Orrico FC, Ness SA . The EVES motif mediates both intermolecular and intramolecular regulation of c-myb Genes Dev 1999 10: 1858–1869

    Google Scholar 

  122. Oelgeschläger M, Krieg J, Luscher-Fierzlaff JM, Luscher B . Casein kinase II phosphorylation site mutations in c-myb affect DNA binding and transcriptional cooperativity with NF-M Mol Cell Biol 1995 15: 5966–5974

    PubMed  PubMed Central  Google Scholar 

  123. Aziz N, Miglarese MR, Hendrickson RC, Shabanowitz J, Sturgill TW, Hunt DF, Bender TP . Modulation of c-myb-induced transcription activation by a phosphorylation site near the negative regulatory domain Proc Natl Acad Sci USA 1995 92: 6429–6433

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Nomura T, Sakai N, Sarai A, Sudo T, Kanei-Ishii C, Ramsay RG, Favier D, Gonda TJ, Ishii S . Negative autoregulation of c-myb activity by homodimer formation through the leucine zipper J Biol Chem 1993 268: 21914–21923

    CAS  PubMed  Google Scholar 

  125. Ramsey RG, Morrice N, Van Eeden P, Kanagasundaram V, Nomura T, De Blaquierre J, Ishii S, Wettenhall R . Regulation of c-myb through protein phosphorylation and leucine zipper interactions Oncogene 1995 11: 2113–2120

    Google Scholar 

  126. Tavner FJ, Simpson R, Tashiro S, Favier D, Jenkins NA, Gilbert DJ, Copeland NG, Macmillan EM, Lutwyche J, Keough RA, Ishii S, Gonda TJ . Molecular cloning reveals that the p160 myb-binding protein is a novel, predominantly nucleolar protein which may play a role in transactivation by myb Mol Cell Biol 1998 18: 989–1002

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Gonda TJ, Metcalf D . Expression of myb, myc, and fos proto-oncogenes during the differentiation of a murine myeloid leukemia Nature 1984 310: 249–251

    CAS  PubMed  Google Scholar 

  128. Sheiness D, Gardinier M . Expression of a proto-oncogene (proto-myb) in hemopoietic tissues of mice Mol Cell Biol 1984 4: 1206–1212

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Duprey SP, Bottinger D . Developmental regulation of c-myb in normal myeloid progenitors Proc Natl Acad Sci USA 1985 82: 6937–6941

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Ess KC, Witte DP, Bascomb CP, Aronow BJ . Diverse developing mouse lineages exhibit high-level c-myb expression in immature cells and loss of expression upon differentiation Oncogene 1999 18: 1103–1111

    CAS  PubMed  Google Scholar 

  131. Mucenski ML, McClain K, Kier AB, Swerdlow SH, Schreiner CM, Miller TA, Pietryga DW, Scott WJ, Potter SS . A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis Cell 1991 65: 677–689

    CAS  PubMed  Google Scholar 

  132. Bies J, Mukhopadhyaya R, Pierce J, Wolff L . Only late, nonmitotic stages of granulocyte differentiation in 32Dcl3 cells are blocked by ectopic expression of murine c-myb and its truncated forms Cell Growth Differ 1995 6: 59–68

    CAS  PubMed  Google Scholar 

  133. Gewirtz AM, Calabretta B . A c-myb antisense oligodeoxynucleotide inhibits normal human hematopoiesis in vitro Science 1988 242: 1303–1306

    CAS  PubMed  Google Scholar 

  134. Katzen AL, Jackson J, Harmon BP, Fung S-M, Ramsay G, Bishop JM . Drosophila myb is required for the G2/M transition and maintenance of diploidy Genes Dev 1998 12: 831–843

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Introna M, Golay J . How can oncogenic transcription factors cause cancer: a critical review of the myb story Leukemia 1999 13: 1301–1306

    CAS  PubMed  Google Scholar 

  136. Golay J, Erba E, Bernasconi S, Peri G, Introna M . The A-myb gene is preferentially expressed in tonsillar CD38+, CD39−, sIgM-B lymphocytes and Burkitt's lymphoma cell lines J Immunol 1994 153: 543–553

    CAS  PubMed  Google Scholar 

  137. Golay J, Broccoli V, Lamorte G, Bifulco C, Parravicini C, Thomas NSB, Delia D, Ferrauti P, Vitolo D, Introna M . The A-myb transcription factor is a marker of centroblasts in vivo J Immunol 1998 160: 2786–2793

    CAS  PubMed  Google Scholar 

  138. Golay J, Capucci A, Arsura M, Castellano M, Rizzo V, Introna M . Expression of c-myb and B-myb, but not A-myb, correlates with proliferation in human hematopoietic cells Blood 1991 77: 149–158

    CAS  PubMed  Google Scholar 

  139. Reiss K, Travali S, Calabretta B, Baserga R . Growth regulated expression of B-myb in fibroblasts and hematopoietic cells J Cell Physiol 1991 148: 338–343

    CAS  PubMed  Google Scholar 

  140. McGinnis W, Garber RL, Wirz J, Kuroiwa A, Gehring WJ . A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans Cell 1984 37: 403–408

    CAS  PubMed  Google Scholar 

  141. Helgason CD, Sauvageau G, Lawrence HJ, Largman C, Humphries RK . Overexpression of HOXB4 enhances the hematopoietic potential of embryonic stem cells differentiated in vitro Blood 1996 87: 2740–2749

    CAS  PubMed  Google Scholar 

  142. Lawrence HJ, Helgason CD, Sauvageau G, Fong S, Izon D, Humphries RK, Larman C . Mice bearing targeted interruptions of the homeobox gene hoxa9 have defects in myeloid, erythroid, and lymphoid hematopoiesis Blood 1997 89: 1922–1930

    CAS  PubMed  Google Scholar 

  143. Tenen DG, Hromas R, Licht JD, Zhang DE . Transcription factors, normal myeloid development, and leukemia Blood 1997 90: 489–519

    CAS  PubMed  Google Scholar 

  144. Fuller JF . Characterization of HOX gene expression duringmyelopoiesis: role of HOX A5 in lineage commitment andmaturation Blood 1999 93: 3391–3400

    CAS  PubMed  Google Scholar 

  145. Allen JD, Adams JM . Enforced expression of Hlx homeobox gene promotes myeloid cell maturation and altered adherence properties of T cells Blood 1993 81: 3242–3251

    CAS  PubMed  Google Scholar 

  146. Lill MC, Fuller JF, Herzig R, Crooks GM, Gasson JC . The role of the homeobox gene, HOX B7, in human myelomonocytic differentiation Blood 1995 85: 692–697

    CAS  PubMed  Google Scholar 

  147. Reddy JC, Licht JD . The WT1 Wilms’ tumor suppressor gene: how much do we really know? Biochem Biophys Acta 1996 1287: 1–28

    PubMed  Google Scholar 

  148. Haber DA, Sohn RL, Buckler AJ, Pelletier J, Call KM, Housman DE . Alternative splicing and genomic structure of the Wilms tumor gene WT1 Proc Natl Acad Sci USA 1991 88: 9618–9622

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Sharma PM, Bowman M, Madden SL, Rauscher FJ, Sukumar SV . RNA editing in the Wilms’ tumor susceptibility gene, WT1 Genes Dev 1994 8: 720–731

    CAS  PubMed  Google Scholar 

  150. Rauscher FJ, Morris JF, Tournary OE, Cook DM, Curran T . Binding of the Wilms tumor locus zinc finger protein to the EGR-1 consensus sequence Science 1990 250: 1259–1262

    CAS  PubMed  Google Scholar 

  151. Wang ZY, Qiu QQ, Enger KT, Deuel TF . A second transcriptionally acitve DNA binding site for the Wilms’ tumor gene product, WT1 Proc Natl Acad Sci USA 1993 90: 8896–8900

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Drummond IA, Rupprecht HD, Rohwer-Nutter P, Lopez-Guisa J, Madden SL, Rauscher FJ, Sukhatme VP . DNA recognition by splicing variants of the Wilms’ tumor suppressor, WT1 Mol Cell Biol 1994 14: 3800–3809

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Wang, Zy, Qiu QQ, Deuel TF . The Wilms’ tumor gene product WT1 activates or suppresses transcription through separate functional domains J Biol Chem 1993 268: 9172–9175

    CAS  PubMed  Google Scholar 

  154. Werner H, Rauscher FJ, Sukhatme VP, Drummond IA, Roberts CT, LeRoith D . Transcriptional repression of the insulin-like growth factor I receptor (IGF-I-R) gene by the tumor suppressor WT1 involves binding to sequences both upstream and downstream of the IGF-I-R gene transcription start site J Biol Chem 1994 269: 12577–12582

    CAS  PubMed  Google Scholar 

  155. Reddy JC, Hosono S, Licht JD . The transcriptional effect of WT1 is modulated by choice of expression vector J Biol Chem 1995 270: 29976–29982

    CAS  PubMed  Google Scholar 

  156. Larsson SH, Charlieu LP, Miyagawa K, Engelkamp D, Rassoulzadegan M, Ross A, Cuzin F, van Heyningen V, Hastie ND . Subcellular localization of WT1 in splicing or transcription factor domains is regulated by alternate splicing Cell 1995 81: 391–401

    CAS  PubMed  Google Scholar 

  157. Davies RC, Calvio C, Bratt E, Larsson SH, Lamond AI, Hastie ND . WT1 interacts with the splicing factor U2AF65 in an isoform-dependent manner and can be incorporated into spliceosomes Genes Dev 1998 12: 3217–3225

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Baird PN, Simmons PJ . Expression of the Wilms’ tumor gene (WT1) in normal hemopoiesis Exp Hematol 1997 25: 312–320

    CAS  PubMed  Google Scholar 

  159. Maurer U, Brieger J, Weidmann E, PS PM, Hoelzer D, Bergmann L . The Wilms’ tumor gene is expressed in a subset of CD34+ progenitors and downregulated early in the course of differentiation in vitro Exp Hematol 1997 25: 945–950

    CAS  PubMed  Google Scholar 

  160. Sekiya M, Adachi M, Hinoda Y, Imai K, Yachi A . Downregulation of Wilms’ tumor gene (wt1) during myelomonocytic differentiation in HL60 cells Blood 1994 7: 1876–1882

    Google Scholar 

  161. Phelan SA, Lindberg C, Call KM . Wilms’ tumor gene, WT1, mRNA is down-regulated during induction of erythroid and megakaryocytic differentiation of K562 cells Cell Growth Differ 1994 5: 677–686

    CAS  PubMed  Google Scholar 

  162. Smith SI, Weil D, Johnson GR, Boyd AW, Li CL . Expression of the Wilms’ tumor suppressor gene, WT1, is upregulated by leukemia inhibitory factor and induces monocytic differentiation in M1 leukemic cells Blood 1998 91: 764–773

    CAS  PubMed  Google Scholar 

  163. Inoue K, Tamaki H, Ogawa H, Oka Y, Soma T, Tatekawa T, Oji Y, Tsuboi A, Kim EH, Kawakami M, Akiyama T, Kishimoto T, Sugiyama H . Wilms’ tumor gene (WT1) competes with differentiation-inducing signal in hematopoietic progenitor cells Blood 1998 91: 2969–2976

    CAS  PubMed  Google Scholar 

  164. Englert C, Hou X, Maheswaran S, Bennett P, Ngwu C, Re GG, Garvin AJ, Rosner MR, Haber DA . WT1 suppresses synthesis of the epidermal growth factor receptor and induces apoptosis EMBO J 1995 14: 4662–4675

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Werner H, Shen-Orr Z, Rauscher FJ, Morris JF, Roberts CT, LeRoith D . Inhibition of cellular proliferation by the Wilms’ tumor suppressor WT1 is associated with suppression of insulin-like growth factor I receptor gene expression Mol Cell Biol 1995 15: 3516–3522

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Kim J, Prawitt D, Bardeesy N, Torban E, Vicaner C, Goodye PR, Zabel B, Pelletier J . The Wilms’ tumor suppressor gene (wt1) product regulates Dax-1 gene expression during gonadal differentiation Mol Cell Biol 1999 19: 2289–2299

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Mayo MW, Wang CY, Drouin SS, Madrid LV, Marshall AF, Reed JC, Weissman BE, Baldwin AS . WT1 modulates apoptosis by transcriptionally upregulating the bcl-2 proto-oncogene EMBO J 1999 18: 3990–4003

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Goodyer P, Dehbi M, Torban E, Bruening W, Pelletier J . Repression of the retinoic acid receptor-α gene by the Wilms tumor suppresor gene product, wt1 Oncogene 1995 10: 1125–1129

    CAS  PubMed  Google Scholar 

  169. Weinberg RA . The retinoblastoma protein and cell cycle control Cell 1995 81: 323–330

    CAS  PubMed  Google Scholar 

  170. Lee EY, Chang CY, Wang YC, Lai CC, Herrup K, Lee WH, Bradley A . Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis Nature 1992 359: 288–294

    CAS  PubMed  Google Scholar 

  171. Condorelli GL, Testa U, Valtieri M, Vitelli L, De Luca A, Barberi T, Montesoro E, Campisi S, Giordano A, Peschle C . Modulation of retinoblastoma gene in normal adult hematopoiesis: peak expression and functional role in advanced erythroid differentiation Proc Natl Acad Sci USA 1995 92: 4808–4812

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Bergh G, Ehinger M, Olsson I, Jacobsen SEW, Gullberg U . Involvement of the retinoblastoma protein in monocytic and neutrophilic lineage commitment of human bone marrow progenitor cells Blood 1999 94: 1971–1978

    CAS  PubMed  Google Scholar 

  173. Hagemeier C, Bannister AJ, Cook A, Kouzarides T . The activation domain of transcription factor PU.1 binds the retinoblastoma protein (RB) and the transcription factor TFIID in vitro: RB shows sequence similarity to TFIID and TFIIB Proc Natl Acad Sci USA 1993 90: 1580–1584

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Chen PL, Riley DJ, Chen-Kiang S, Lee WH . Retinoblastoma protein directly interacts with and activates the transcription factor NF-IL6 Proc Natl Acad Sci USA 1996 93: 465–469

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Douer D, Koeffler HP . Retinoic acid enhaces colony-stimulating factor-induced clonal growth of normal human myeloid progenitor cells in vitro Exp Cell Res 1982 138: 193–198

    CAS  PubMed  Google Scholar 

  176. Gratas C, Menot ML, Dresch C, Chomienne C . Retinoic acid supports granulocytic but not erythroid differentiation of myeloid progenitors in normal bone marrow cells Leukemia 1993 7: 1156–1162

    CAS  PubMed  Google Scholar 

  177. Hodges RE, Sauberlich HE, Canham JE, Wallace DL, Rucker RB, Mejia LA, Mohanram M . Hematopoietic studies in vitamin A deficiency Am J Clin Nut 1978 31: 876–885

    CAS  Google Scholar 

  178. Breitman TR, Selonick SE, Collins SJ . Induction of differentiation of the human promyelocytic leukemia cell line HL-60 by retinoic acid Proc Natl Acad Sci USA 1980 77: 2936–2940

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Breitman TR, Collins SJ, Keene BR . Terminal differentiation of human promyelocytic leukemia cells in primary culture in response to retinoic acid Blood 1981 57: 1000–1004

    CAS  PubMed  Google Scholar 

  180. Chambon P . A decade of molecular biology of retinoic acid receptors FASEB J 1996 10: 940–954

    CAS  PubMed  Google Scholar 

  181. Mangelsdorf DJ, Evans RM . The RXR heterodimers and orphan receptors Cell 1995 83: 841–850

    CAS  PubMed  Google Scholar 

  182. de The H, Marchio A, Tiollais P, Dejean A . Differential expression and ligand regulation of the retinoic acid receptor alpha and beta genes EMBO J 1989 8: 429–433

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Umesono K, Murakami KK, Thompson CC, Evans RM . Direct repeats as selective response elements for the thyroid hormone, retinoic acid and vitamin D3 receptors Cell 1991 65: 1255–1266

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Naar AM, Boutin JM, Lipkin SM, Yu VC, Holloway JM, Glass CK, Rosenfeld MG . The orientation and spacing of core DNA-binding motifs dictate selective transcriptional responses to three nuclear receptors Cell 1991 65: 1267–1279

    CAS  PubMed  Google Scholar 

  185. Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, Fanelli M, Ruthardt M, Ferrara FF, Zamir I, Seiser C, Grignani F, Lazar MA, Minucci S, Pelicci PG . Fusion proteins of the retinoic acid receptor-α recruit histone deacetylase in promyelocytic leukaemia Nature 1998 391: 815–818

    CAS  PubMed  Google Scholar 

  186. Hong SH, David G, Wong CW, Dejean A, Privalsky ML . SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor α (RARα) and PLZF-RARα oncoproteins associated with acute promyelocytic leukaemia Proc Natl Acad Sci USA 1998 94: 9028–9033

    Google Scholar 

  187. Alland L, Muhle R, Hou H, Potes J, Chin L, Schreiber-Agus N, DePinho RA . Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression Nature 1997 387: 49–55

    CAS  PubMed  Google Scholar 

  188. Grunstein M . Histone acetylation in chromatin structure and transcription Nature 1997 389: 349–352

    CAS  PubMed  Google Scholar 

  189. Onate SA, Tsai SY, Tsai MJ, O'Malley B . Sequence and characterization of a coactivator for the steroid hormone receptor superfamily Science 1995 270: 1354–1357

    CAS  PubMed  Google Scholar 

  190. Le Douarin B, Nielsen AL, Garnier J-M, Ichinose H, Jeanmougin F, Losson R, Chambon P . A possible involvement of TIF1α and TIF1β in the epigenetic control of transcription by nuclear receptors EMBO J 1996 15: 6701–6715

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Chen H, Lin R, Schiltz R, Chavravarti S, Nash A, Nagy L, Privalsky M, Nakatani Y, Evans R . Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300 Cell 1997 90: 569–580

    CAS  PubMed  Google Scholar 

  192. Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, McKenna NJ, Onate SA, Tsai SY, Tsai M-J, O'Malley BW . Steroid receptor co-activator-1 is a histone acetyl-transferase Nature 1997 389: 194–198

    CAS  PubMed  Google Scholar 

  193. Popperl H, Featherstone MS . Identification of a retinoic acid response element upstream of the murine Hox-4.2 gene Mol Cell Biol 1993 13: 257–265

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Weihua X, Kolla V, Kalvakolanu DV . Modulation of interferon action by retinoids. Induction of murine Stat1 gene expression by retinoic acid J Biol Chem 1997 272: 9742–9748

    CAS  PubMed  Google Scholar 

  195. Chih DY, Chumakov AM, Park DJ, Silla AG, Koeffler HP . Modulation of mRNA expression of a novel human myeloid-selective CCAAT/enhancer binding protein gene (C/EBPε) Blood 1997 90: 2987–2994

    CAS  PubMed  Google Scholar 

  196. Liu M, Iavarone A, Freedman LP . Transcriptional activation of the human p21(WAF/CIP1) gene by retinoic acid receptor –correlation with retinoid induction of U937 cell differentiation J Biol Chem 1996 271: 31723–31728

    CAS  PubMed  Google Scholar 

  197. Scott LM, Mueller L, Collins SJ . E3, a hematopoietic-specific transcript directly regulated by the retinoic acid receptor alpha Blood 1996 88: 2517–2530

    CAS  PubMed  Google Scholar 

  198. Tsai S, Bartelmez S, Heyman R, Damm K, Evans R, Collins SJ . A mutated retinoic acid receptor-alpha exhibiting dominant-negative activity alters the lineage development of a multipotent hematopoietic cell line Genes Dev 1992 6: 2558–2569

    Google Scholar 

  199. Tsai S, Collins SJ . A dominant-negative retinoic acid receptor blocks neutrophil differentiation at the promyelocyte stage Proc Natl Acad Sci USA 1993 90: 7153–7157

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Kastner P, Mark M, Chambon P . Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life Cell 1995 83: 859–869

    CAS  PubMed  Google Scholar 

  201. Labrecque J, Allan D, Chambon P, Iscove NN, Lohnes D, Hoang T . Impaired granulocytic differentiation in vitro in hematopoietic cells lacking retinoic acid receptors α1 and γ Blood 1998 92: 607–615

    CAS  PubMed  Google Scholar 

  202. Purton LE, Bernstein ID, Collins SJ . All-trans retinoic acid delays the differentiation of primitive hematopoietic precursors (linc-kit+Sca-1+) while enhancing the terminal maturation of committed granulocyte/monocyte progenitors Blood 1999 94: 483–495

    CAS  PubMed  Google Scholar 

  203. Darnell JE Jr . STATs and gene regulation Science 1997 277: 1630–1635

    PubMed  Google Scholar 

  204. Lamb P, Seidel HM, Haslam J, Milocco L, Kessler LV, Stein RB, Rosen J . STAT protein complexes activated by interferon-γ and gp130 signaling molecules differ in their sequence preferences and transcriptional induction properties Nucleic Acids Res 1995 23: 3283–3289

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Seidel HM, Milocco LH, Lamb P, Darnell JE Jr, Stein RB, Rosen J . Spacing of palindromic half sites as a determinant of selective STAT (signal transducers and activators of transcription) DNA binding and transcriptional activity Proc Natl Acad Sci USA 1995 92: 3041–3045

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Decker T, Kovarik P, Meinke A . GAS elements: a few nucleotides with a major impact on cytokine-induced gene expression J Interfer Cytokine Res 1997 17: 121–134

    CAS  Google Scholar 

  207. Ward AC, Touw I, Yoshimura A . The Jak-Stat pathway in normal and perturbed hematopoiesis Blood 2000 95: 19–29

    CAS  PubMed  Google Scholar 

  208. Schaefer TS, Sanders LK, Nathans D . Cooperative transcriptional activity of Jun and Stat3 beta, a short form of Stat3 Proc Natl Acad Sci USA 1995 92: 9097–9101

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Zhang JJ, Zhao Y, Chait BT, Lathem WW, Ritzi M, Knippers R, Darnell JE, Jr . Ser727-dependent recruitment of MCM5 by Stat1 α in IFN-γ-induced transcriptional activation EMBO J 1998 17: 6963–6971

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Zhu M-h, John S, Berg M, Leonard WJ . Functional association of Nmi with Stat5 and Stat1 in IL-2- and IFNγ-mediated signaling Cell 1999 96: 121–130

    CAS  PubMed  Google Scholar 

  211. Wen Z, Zhong Z, Darnell JE Jr . Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation Cell 1995 82: 241–250

    CAS  PubMed  Google Scholar 

  212. Zhang X, Blenis J, Li H-C, Schindler C, Chen-Kiang S . Requirement of serine phosphorylation for formation of STAT-promoter complexes Science 1995 267: 1990–1994

    CAS  PubMed  Google Scholar 

  213. Chung CD, Liao J, Liu B, Rao X, Jay P, Berta P, Shuai K . Specific inhibition of Stat3 signal transduction by PIAS3 Science 1997 278: 1803–1805

    CAS  PubMed  Google Scholar 

  214. Jain N, Zhang T, Fong SL, Lim CP, Cao X . Repression of Stat3 activity by activation of mitogen-activated protein kinase Oncogene 1998 17: 3157–3167

    CAS  PubMed  Google Scholar 

  215. Rajotte D, Sadowski HB, Haman A, Gopalbhai K, Meloche S, Liu L, Krystal G, Hoang T . Contribution of both STAT and SRF/TCF to c-fos promoter activation by granulocyte–macrophage colony-stimulating factor Blood 1996 88: 2906–2916

    CAS  PubMed  Google Scholar 

  216. Matsumura I, Ishikawa J, Nakajima K, Oritani K, Tomiyama Y, Miyagawa J, Kato T, Miyazaki H, Matsuzawa Y, Kanakura Y . Thrombopoietin-induced differentiation of a human megakaryoblastic leukemia cell line, CMK, involves transcriptional activation of p21(WAF1/Cip1) by STAT5 Mol Cell Biol 1997 17: 2933–2943

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Matsumoto A, Masuhara M, Mitsui K, Yokouchi M, Ohtsubo M, Misawa H, Miyajima A, Yoshimura A . CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation Blood 1997 89: 3148–3154

    CAS  PubMed  Google Scholar 

  218. Matsumura I, Kitamura T, Wakao H, Tanaka H, Hashimoto K, Albanese C, Downward J, Pestell RG, Kanakura Y . Transcriptional regulation of the cyclin D1 promoter by STAT5: its involvement in cytokine-dependent growth of hematopoietic cells EMBO J 1999 18: 1367–1377

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Mui AL-F, Wakao H, O'Farrell A-M, Harada N, Miyajima A . Interleukin-3, granulocyte–macrophage colony stimulating factor and interleukin-5 transduce signals through two STAT5 homologs EMBO J 1995 14: 1166–1175

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Nicholson SE, Starr R, Novak U, Hilton DJ, Layton JE . Tyrosine residues in the granulocyte colony-stimulating receptor (G-CSF-R) mediate G-CSF-induced differentiation of murine myeloid leukemic (M1) cells J Biol Chem 1996 271: 26947–26953

    CAS  PubMed  Google Scholar 

  221. Novak U, Ward AC, Hertzog PJ, Hamilton JA, Paradiso L . Aberrant activation of JAK/STAT pathway components in response to G-CSF, interferon-alpha/beta and interferon-gamma in NFS-60 cells Growth Factors 1996 13: 251–260

    CAS  PubMed  Google Scholar 

  222. Ward AC, Hermans MHA, Smith L, van Aesch YM, Schelen AM, Antonissen C, Touw IP . Tyrosine-dependent and independent mechanisms of STAT3 activation by the human granulocyte colony-stimulating factor (G-CSF) receptor are differentially utilized depending on G-CSF concentration Blood 1999 93: 113–124

    CAS  PubMed  Google Scholar 

  223. Ward AC, van Aesch YM, Schelen AM, Touw IP . Defective internalization and sustained activation of truncated granulocyte colony-stimulating factor receptor found in severe congenital neutropenia/acute myeloid leukemia Blood 1999 93: 447–458

    CAS  PubMed  Google Scholar 

  224. Takeda K, Noguchi K, Shi W, Tanaka T, Matsumoto M, Yoshida N, Kishimoto T, Akira S . Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality Proc Natl Acad Sci USA 1997 94: 3801–3804

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang D, Brown M, Bodner S, Grosveld G, Ihle JN . Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses Cell 1998 93: 841–850

    CAS  PubMed  Google Scholar 

  226. Nakajima K, Yamanaka Y, Nakae K, Kojima H, Ichiba M, Kiuchi N, Kitaoka T, Fukada T, Hibi M, Hirano T . A central role for Stat3 in IL-6-induced regulation of growth and differentiation in M1 leukemia cells EMBO J 1996 15: 3651–3658

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Shimozaki K, Nakajima K, Hirano T, Nagata S . Involvement of STAT3 in the granulocyte colony-stimulating factor-induced differentiation of myeloid cells J Biol Chem 1997 272: 25184–25189

    CAS  PubMed  Google Scholar 

  228. Ward AC, Smith L, de Koning JP, van Aesch Y, Touw IP . Multiple signals mediate proliferation, differentiation and survival from the granulocyte colony-stimulating factor receptor in myeloid 32D cells J Biol Chem 1999 274: 14956–14962

    CAS  PubMed  Google Scholar 

  229. Dong F, Liu X, de Koning JP, Touw IP, Henninghausen L, Larner A, Grimley PM . Stimulation of Stat5 by granulocyte colony-stimulating factor (G-CSF) is modulated by two distinct cytoplasmic regions of the G-CSF receptor J Immunol 1998 161: 6503–6509

    CAS  PubMed  Google Scholar 

  230. Ward AC, van Aesch YM, Gits J, Schelen AM, de Koning JP, van Leeuwen D, Freedman MH, Touw IP . Novel point mutation in the extracellular domain of the granulocyte colony-stimulating factor (G-CSF) receptor in a case of severe congenital neutropenia hyporesponsive to G-CSF treatment J Exp Med 1999 190: 497–507

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Blackwell TK, Kretzner L, Blackwood EM, Eisenman RN, Weintraub H . Sequence specific DNA binding by the c-Myc protein Science 1990 250: 1149–1151

    CAS  PubMed  Google Scholar 

  232. Blackwood EM, Eisenman RN . Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc Science 1991 251: 1211–1217

    CAS  PubMed  Google Scholar 

  233. Watanabe S, Ishida S, Koike K, Arai K . Characterization of cis-regulatory elements of the c-myc promoter responding to human GM-CSF or mouse interleukin 3 in mouse proB cell line BA/F3 cells expressing the human GM-CSF receptor Mol Cell Biol 1995 6: 627–636

    CAS  Google Scholar 

  234. de Koning JP, Soede-Bobok AA, Schelen AM, Smith L, van Leeuwen D, Santini V, Burgering BMT, Bos JL, Löwenberg B, Touw IP . Proliferation signaling and activation of Shc, p21Ras and Myc via tyrosine 764 of human granulocyte colony-stimulating factor receptor Blood 1998 91: 1924–1933

    CAS  PubMed  Google Scholar 

  235. Grandori C, Eisenman RN . Myc target genes Trends in Biochem Sci 1997 22: 177–181

    CAS  Google Scholar 

  236. Cole MD . The myc oncogene: its role in transformation and differentiation Annu Rev Genet 1986 20: 361–384

    CAS  PubMed  Google Scholar 

  237. Luscher B, Christenson E, Litchfield DW, Krebs EG, Eisenman RN . Myb DNA binding inhibited by phosphorylation at a site deleted during oncogenic activation Nature 1990 344: 517–522

    CAS  PubMed  Google Scholar 

  238. Amati B, Brooks MW, Levy N, Littlewood TD, Evan GI, Land H . Oncogenic activity of the c-Myc protein requires dimerization with Max Cell 1993 72: 233–245

    CAS  PubMed  Google Scholar 

  239. Vlach J, Hennecke S, Alevizopoulos K, Conti D, Amati B . Growth arrest by the cyclin-dependent kinase inhibitor p27kip1 is abrogated by c-Myc EMBO J 1996 15: 6595–6604

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Berns K, Hijmans EM, Bernards R . Repression of c-Myc responsive genes in cycling cells causes G1 arrest through reduction of cyclin E/CDK2 kinase activity Oncogene 1997 15: 1347–1356

    CAS  PubMed  Google Scholar 

  241. Tsutsui T, Hesabi B, Moons DS, Pandolfi PP, Hansel KS, Koff A, Kiyokawa H . Targeted disruption of CDK4 delays cell cycle entry with enhance p27Kip activity Mol Cell Biol 1999 19: 7011–7019

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Mateyak MK, Obaya AJ, Sedivy JM . C-Myc regulates cyclin D-Cdk4 and -Cdk6 activity but affects cell cycle progression at multiple independent points Mol Cell Biol 1999 19: 4672–4683

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Zervos AS, Gyruris J, Brent R . Mxi, a protein that specifically interacts with Max to bind Myc-Max recognition sites Cell 1993 72: 223–232

    CAS  PubMed  Google Scholar 

  244. Hurlin PJ, Queva C, Koskinen PJ, Steingrimsson E, Ayer DE, Copeland NG, Jenkins NA, Eisenman RN . Mad3 and Mad4: novel Max-interacting transcriptional repressors that suppress c-myc dependent transformation and are expressed during neural and epidermal differentiation EMBO J 1995 14: 5646–5659

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Ayer DE, Laherty CD, Lawrence QA, Armstrong AP, Eisenman RN . Mad proteins contain a dominant transcription repressor domain Mol Cell Biol 1996 16: 5772–5781

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Cultraro CM, Bino T, Segal S . Function of the c-Myc antagonist Mad1 during a molecular switch from proliferation to differentiation Mol Cell Biol 1997 17: 2353–2359

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Schreiber-Agus N, Chin L, Chen K, Torres R, Rao G, Guida P, Skoultchi AI, DePinho RA . An amino-terminal domain of Mxi mediates anit-myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3 Cell 1995 80: 777–786

    CAS  PubMed  Google Scholar 

  248. Laherty CD, Yang W, Sun J, Davie JR, Seto E, Eisenman RN . Histone deacetylases associated with the mSin3 corepressor mediate Mad transcriptional repression Cell 1997 89: 349–356

    CAS  PubMed  Google Scholar 

  249. Larsson LG, Pettersson M, Oberg F, Nilsson K, Luschner B . Expression of mad, max, mxi and c-myc during induced differentiation of hematopoietic cells: opposite regulation of mad and c-myc Oncogene 1994 9: 1247–1252

    CAS  PubMed  Google Scholar 

  250. Delgado MD, Lerga A, Canelles M, Gomez-Casarez MT, Leon J . Differential regulation of Max and role of c-Myc during erythroid and myelomonocytic differentiation of K562 cells Oncogene 1995 10: 1659–1665

    CAS  PubMed  Google Scholar 

  251. Ayer DE, Kretzner L, Eisenman RN . Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity Cell 1993 72: 211–222

    CAS  PubMed  Google Scholar 

  252. Queva C, Hurlin PJ, Foley KP, Eisenman RN . Sequential expression of the Mad family of transcriptional repressors during differentiation and development Oncogene 1998 16: 967–977

    CAS  PubMed  Google Scholar 

  253. Foley KP, McArthur GA, Queva C, Hurlin P, Soriano P, Eisenman RN . Targeted disruption of the MYC antagonist MAD1 inhibits cell cycle exit during granulocyte differentiation EMBO J 1998 17: 774–785

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Skalnik DG, Strauss EC, Orkin SH . CCAAT-displacement protein as a repressor of the myelomonocytic-specific gp91-phox promoter J Biol Chem 1991 266: 16736–16744

    CAS  PubMed  Google Scholar 

  255. Lou W, Skalnik DG . CCAAT displacement protein competes with multiple transcriptional activators for binding to four sites in the proximal gp91-phox promoter J Biol Chem 1996 271: 18203–18210

    Google Scholar 

  256. Khanna-Gupta A, Zibello T, Kolla S, Neufeld EJ, Berliner N . CCAAT displacement protein (CDP/cut) recognizes a silencer element within the lactoferrin promoter Blood 1997 90: 2784–2795

    CAS  PubMed  Google Scholar 

  257. Bavisotto L, Kaushansky K, Lin N, Hromas R . Anti-sense oligonucleotides from the stage-specific myeloid zinc finger gene, MZF-1, inhibits granulopoiesis in vitro J Exp Med 1991 174: 1097–1101

    CAS  PubMed  Google Scholar 

  258. Robertson KA, Hill DP, Kelley MR, Tritt R, Crum B, Van Epps S, Srour E, Rice S, Hromas R . The myeloid zinc finger gene (MZF-1) delays retinoic acid-induced apoptosis and differentiation in myeloid leukemia cells Leukemia 1998 12: 690–698

    CAS  PubMed  Google Scholar 

  259. Ishiguro A, Spirin KS, Shiohara M, Tobler A, Gombart AF, Israel MA, Norton JD, Koeffler HP . Id2 expression increases with differentiation of human myeloid cells Blood 1996 87: 5225–5231

    CAS  PubMed  Google Scholar 

  260. Cooper CL, Brady G, Bilia F, Iscove NN, Quesenberry PJ . Expression of the Id family of helix–loop–helix regulators during growth and development in the hematopoietic system Blood 1997 89: 3155–3165

    CAS  PubMed  Google Scholar 

  261. Kreider BL, Benezra R, Rovera G, Kadesch T . Inhibition of myeloid differentiation by the helix–loop–helix protein Id Science 1992 255: 1700–1702

    CAS  PubMed  Google Scholar 

  262. Shaknovich R, Yeyati PL, Ivins S, Melnick A, Lempert C, Waxman S, Zelent A, Licht JD . The promyelocytic leukemia zinc finger protein affects myeloid cell growth, differentiation, and apoptosis Mol Cell Biol 1998 18: 5533–5545

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Yeyati PL, Shaknovich R, Boterashvili S, Li J, Ball HJ, Waxman S, Nason-Burchenal K, Dmitrovsky E, Zelent A, Licht JD . Leukemia translocation protein PLZF inhibits cell growth and expression of cyclin A Oncogene 1999 18: 925–934

    CAS  PubMed  Google Scholar 

  264. Lieschke GJ . CSF-deficient mice – what have they taught us? In: Bock GB, Goode JA (eds) The Molecular Basis of Cellular Defense Mechanisms John Wiley & Sons Ltd: West Sussex 1997 pp 60–77

    Google Scholar 

  265. Liu F, Wu HY, Wesselschmidt R, Kornaga T, Link DC . Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice Immunity 1996 5: 491–501

    CAS  PubMed  Google Scholar 

  266. Shivdasani RA, Orkin SH . The transcriptional control of hematopoiesis Blood 1996 87: 4025–4039

    CAS  PubMed  Google Scholar 

  267. Heyworth C, Gale K, Dexter M, May G, Enver T . A GATA-2/estrogen receptor chimera functions as a ligand-dependent negative regulator of self-renewal Genes Dev 1999 13: 1847–1860

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Nuchprayoon I, Simkevich CP, Menglin L, Friedman AD, Rosmarin AD . GABP cooperates with c-myb and C/EBP to activate the neutrophil elastase promoter Blood 1997 89: 4546–4554

    CAS  PubMed  Google Scholar 

  269. Rekhtman N, Radparvar F, Evans T, Skoultchi AI . Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells Genes Dev 1999 13: 1398–1411

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Zhang P, Behre G, Pan J, Iwama A, Wara-Aswapati N, Radomska HS, Auron PE, Tenen DG, Sun Z . Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1 Proc Natl Acad Sci USA 1999 96: 8705–8710

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Sieweke MH, Tekotte H, Frampton J, Graf T . MafB is an interaction partner and repressor of Ets-1 that inhibits erythroid differentiation Cell 1996 85: 49–60

    CAS  PubMed  Google Scholar 

  272. Hegde SP, Kumar A, Kurschner C, Shapiro LH . c-maf interacts with c-Myb to regulate transcription of an early myeloid gene during differentiation Mol Cell Biol 1998 18: 2729–2737

    CAS  PubMed Central  Google Scholar 

  273. Hegde SP, Zhao J, Ashmun RA, Shapiro LH . c-Maf induces monocytic differentiation and apoptosis in bipotent myeloid progenitors Blood 1999 94: 1578–1589

    CAS  PubMed  Google Scholar 

  274. Christy RJ, Kaestner KH, Geiman DE, Lane MD . CCAAT/enhancer binding protein gene promoter: binding of nuclear factors during differentiation of 3T3-L1 preadipocytes Proc Natl Acad Sci USA 1991 88: 2593–2597

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Chen H, Ray-Gallet D, Zhang P, Hetherington CJ, Gonzalez DA, Zhang D-E, Moreau-Gachelin F, Tenen DG . PU.1 (Spi-1) autoregulates its expression in myeloid cells Oncogene 1995 11: 1549–1560

    CAS  PubMed  Google Scholar 

  276. Kistler B, Pfisterer P, Wirth T . Lymphoid- and myeloid-specific activity of the PU.1 promoter is determined by the combinatorial action of octamer and ets transcription factors Oncogene 1995 11: 1095–1106

    CAS  PubMed  Google Scholar 

  277. Cogswell JP, Cogswell PC, Kuehl WM, Cuddihy AM, Bender TM, Engelke U, Marcu KB, Ting JPY . Mechanism of c-myc regulation by c-Myb in different cell lineages Mol Cell Biol 1993 13: 2858–2869

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Zhang X, Xing G, Fraizer GC, Saunders GF . Transactivation of an intronic hematopoietic-specific enhancer of the human Wilms’ tumor 1 gene by GATA-1 and c-Myb J Biol Chem 1997 272: 29272–29280

    CAS  PubMed  Google Scholar 

  279. Fukunaga R, Ishizaka Ikeda E, Seto Y, Nagata S . Expression cloning of a receptor for murine granulocyte colony-stimulating factor Cell 1990 61: 341–350

    CAS  PubMed  Google Scholar 

  280. Avalos BR . Molecular analysis of the granulocyte colony-stimulating factor receptor Blood 1996 88: 761–777

    CAS  PubMed  Google Scholar 

  281. Okuda K, Foster R, Griffin JD . Signaling domains of the beta c chain of the GM-CSF/IL-3/IL-5 receptor Ann NY Acad Sci 1999 872: 305–312

    CAS  PubMed  Google Scholar 

  282. Blalock WL, Weinstein-Oppenheimer C, Chang F, Hoyle PE, Wang X-Y, Algate PA, Franklin RA, Oberhaus SM, Steelman LS, McCubrey JA . Signal transduction, cell cycle regulatory, and anti-apoptotic pathways regulated by IL-3 in hematopoietic cells: possible sites for intervention with anti-neoplastic drugs Leukemia 1999 13: 1109–1166

    CAS  PubMed  Google Scholar 

  283. Dong F, van Buitenen C, Pouwels K, Hoefsloot LH, Löwenberg B, Touw IP . Distinct cytoplasmic regions of the human granulocyte colony-stimulating factor receptor involved in induction of proliferation and maturation Mol Cell Biol 1993 13: 7774–7781

    CAS  PubMed  PubMed Central  Google Scholar 

  284. Fukunaga R, Ishizaka-Ikeda E, Nagata S . Growth and differentiation signals mediated by different regions in the cytoplasmic domain of granulocyte colony-stimulating factor receptor Cell 1993 74: 1079–1087

    CAS  PubMed  Google Scholar 

  285. Dong F, Brynes RK, Tidow N, Welte K, Löwenberg B, Touw IP . Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia New Engl J Med 1995 333: 487–493

    CAS  PubMed  Google Scholar 

  286. Fukunaga R, Seto Y, Mizushima S, Nagata S . Three different mRNAs encoding human granulocyte colony-stimulating factor receptor Proc Natl Acad Sci USA 1990 87: 8702–8706

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Nicholson SE, Oates AC, Harpur AG, Ziemiecki A, Wilks AF, Layton JE . Tyrosine kinase JAK1 is associated with the granulocyte-colony stimulating factor receptor and both become tyrosine phosphorylated after receptor activation Proc Natl Acad Sci USA 1994 91: 2985–2988

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Yoshikawa A, Murakami H, Nagata S . Distinct signal transduction through the tyrosine-containing domains of the granulocyte colony-stimulating factor receptor EMBO J 1995 14: 5288–5296

    CAS  PubMed  PubMed Central  Google Scholar 

  289. de Koning JP, Dong F, Smith L, Schelen AM, Barge RM, van der Plas DC, Hoefsloot LH, Löwenberg B, Touw IP . The membrane-distal cytoplasmic region of human granulocyte colony-stimulating factor receptor is required for STAT3 but not STAT1 homodimer formation Blood 1996 87: 1335–1342

    CAS  PubMed  Google Scholar 

  290. Chakraborty A, Dyer KF, Cascio M, Mietzner TA, Tweardy DJ . Identification of a novel Stat3 recruitment and activation motif within the granulocyte colony-stimulating factor receptor Blood 1999 93: 15–24

    CAS  PubMed  Google Scholar 

  291. de Koning JP, Schelen AM, Dong F, van Buitenen C, Burgering BM, Bos JL, Löwenberg B, Touw IP . Specific involvement of tyrosine 764 of human granulocyte colony-stimulating factor receptor in signal transduction mediated by p145/Shc/GRB2 or p90/GRB2 complexes Blood 1996 87: 132–140

    CAS  PubMed  Google Scholar 

  292. Barge RM, de Koning JP, Pouwels K, Dong F, Löwenberg B, Touw IP . Tryptophan 650 of human granulocyte colony-stimulating factor (G-CSF) receptor, implicated in the activation of JAK2, is also required for G-CSF-mediated activation of signaling complexes of the p21ras route Blood 1996 87: 2148–2153

    CAS  PubMed  Google Scholar 

  293. Avalos BR, Hunter MG, Parker JM, Ceselski SK, Druker BJ, Corey SJ, Mehta VB . Point mutations in the conserved box 1 region inactivate the human granulocyte colony-stimulating factor receptor for growth signal transduction and tyrosine phosphorylationof p75c-rel Blood 1995 85: 3117–3126

    CAS  PubMed  Google Scholar 

  294. Tian S-S, Tapley P, Sincich C, Stein RB, Rosen J, Lamb P . Multiple signaling pathways induced by granulocyte colony-stimulating factor involving activation of JAKs, STAT5, and/or STAT3 are required for regulation of three distinct classes of immediate early genes Blood 1996 88: 4435–4444

    CAS  PubMed  Google Scholar 

  295. Corey SJ, Burkhardt AL, Bolen JB, Geahlen RL, Tkatch LS, Tweardy DJ . Granulocyte colony-stimulating factor receptor signaling involves the formation of a three-component complex with Lyn and Syk protein-tyrosine kinases Proc Natl Acad Sci USA 1994 91: 4683–4687

    CAS  PubMed  PubMed Central  Google Scholar 

  296. Corey SJ, Dombrosky-Ferlan PM, Zuo S, Krohn E, Donnenberg AD, Zorich P, Romero G, Takata M, Kurosaki T . Requirement of Src kinase Lyn for induction of DNA synthesis by granulocyte colony-stimulating factor J Biol Chem 1998 273: 3230–3235

    CAS  PubMed  Google Scholar 

  297. Ward AC, Monkhouse JL, Csar XF, Touw IP, Bello PA . The Src-like kinase Hck is activated by granulocyte colony-stimulating factor (G-CSF), and docks to the activated G-CSF receptor Biochem Biophys Res Commun 1998 251: 117–123

    CAS  PubMed  Google Scholar 

  298. Hunter MG, Avalos BR . Phosphatidylinositol 3′-kinase and SH2-containing inositol phosphatase (SHIP) are recruited by distinct positive and negative growth-regulatory domains in the granulocyte colony-stimulating factor receptor J Immunol 1998 160: 4979–4987

    CAS  PubMed  Google Scholar 

  299. Liu Q, Sasaki T, Kozieradzki I, Wakeham A, Itie A, Dumont DJ, Penninger JM . SHIP is a negative regulator of growth factor-receptor-mediated PKB/Akt activation and myeloid cell survival Genes Dev 1999 13: 786–791

    CAS  PubMed  PubMed Central  Google Scholar 

  300. Minami M, Inoue M, Wei S, Takeda K, Matsumoto M, Kishimoto T, Akira S . STAT3 activation is a critical step in gp130-mediated terminal differentiation and growth arrest of a myeloid cell line Proc Natl Acad Sci USA 1996 93: 3963–3966

    CAS  PubMed  PubMed Central  Google Scholar 

  301. de Koning JP, Smith L, Schelen AM, Lowenberg B, Touw I . STAT3 is essential for down modulation of G-CSF-induced proliferation and neutrophil differentiation Blood 1997 90: 597a

    Google Scholar 

  302. Druker BJ, Neumann M, Okuda K, Franza BRJ, Griffin JD . rel is rapidly tyrosine phosphorylated following granulocyte-colony stimulating factor treatment of human neutrophils J Biol Chem 1994 269: 5387–5390

    CAS  PubMed  Google Scholar 

  303. Betsuyaku T, Liu F, Senior RM, Haug JS, Brown EJ, Jones SL, Matsushima K, Link DC . A functional granulocyte colony-stimulating factor receptor is required for normal chemotractant-induced neutrophil activation J Clin Invest 1999 103: 825–832

    CAS  PubMed  PubMed Central  Google Scholar 

  304. Dong F, Dale DC, Bonilla MA, Freedman M, Fasth A, Neijens HJ, Palmblad J, Briars GL, Carlsson G, Veerman AJ, Welte K, Löwenberg B, Touw IP . Mutations in the granulocyte colony-stimulating factor receptor gene in patients with severe congenital neutropenia Leukemia 1997 11: 120–125

    CAS  PubMed  Google Scholar 

  305. Hermans MHA, Ward AC, Antonissen C, Karis A, Lowenberg B, Touw IP . Perturbed granulopoiesis in mice with a targeted mutation in the granulocyte colony-stimulating factor receptor gene associated with severe chronic neutropenia Blood 1998 92: 32–39

    CAS  PubMed  Google Scholar 

  306. Lagasse E, Weissman IL . Enforced expression of Bcl-2 in monocytes rescues macrophages and partially reversesosteopetrosis in op/op mice Cell 1997 89: 1021–1031

    CAS  PubMed  Google Scholar 

  307. Akashi K, Kondo M, von Freeden-Jeffry U, Murray R, Weissman IL . Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice Cell 1997 89: 1033–1041

    CAS  PubMed  Google Scholar 

  308. Lacronique V, Boureux A, Valle VD, Poirel H, Quang CT, Mauchauffe M, Berthou C, Lessard M, Berger R, Ghysdael J, Bernard OA . A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia Science 1997 278: 1309–1312

    CAS  PubMed  Google Scholar 

  309. Rodel JE, Link DC . Suppression of apoptosis during cytokine deprivation of 32D cells is not sufficient to induce complete granulocytic differentiation Blood 1996 87: 858–864

    CAS  PubMed  Google Scholar 

  310. Rausch O, Marshall CJ . Tyrosine 763 of the murine granulocyte colony-stimulating factor receptor mediates Ras-dependent activation of the JNK/SAPK mitogen-activated protein kinase pathway Mol Cell Biol 1997 17: 1170–1179

    CAS  PubMed  PubMed Central  Google Scholar 

  311. Bassuk AG, Leiden JM . A direct physical association between ETS and AP-1 transcription factors in normal human T cells Immunity 1995 3: 223–237

    CAS  PubMed  Google Scholar 

  312. Behre G, Whitmarsh AJ, Coghlan MP, Hoang T, Carpenter CL, Zhang D-E, Davis RJ, Tenen DG . c-Jun is a JNK-independent coactivator of the PU.1 transcription factor J Biol Chem 1999 274: 4939–4946

    CAS  PubMed  Google Scholar 

  313. Li AC, Guidez FRB, Collier G, Glass CK . The macrosialin promoter directs high levels of transcriptional activity in macrophages dependent on combinatorial interactions between PU.1 and c-Jun J Biol Chem 1998 273: 5389–5399

    CAS  PubMed  Google Scholar 

  314. Nakajima T, Kinoshita S, Sasagawa T, Sasaki K, Naruto M, Kishimoto T, Akira S . Phosphorylation at threonine-235 by a ras-dependent mitogen-activated protein kinase cascade is essential for transcription factor NF-IL6 Proc Natl Acad Sci USA 1993 90: 2207–2211

    CAS  PubMed  PubMed Central  Google Scholar 

  315. Behre G, Smith LT, Carpenter CL, Hiddemann W, Friedman AD, Tenen DG . Ras enhances the ability of C/EBPα to transactivate the G-CSF receptor promoter by phosphorylation of serine 248 of the C/EBPα transactivation domain Blood 1998 94: 68a

    Google Scholar 

  316. Kowenz-Leutz E, Herr P, Niss K, Leutz A . The homeobox gene GBX2, a target of the myb oncogene, mediates autocrine growth and monocyte differentiation Cell 1997 91: 185–195

    CAS  PubMed  Google Scholar 

  317. Leverson JD, Koskienen PJ, Orrico FC, Rainio EM, Jalkanen KJ, Dash EB, Eisenman RN, Ness SA . Pim-1 kinase and p100 cooperate to enhance c-Myb activity Mol Cell 1998 2: 417–425

    CAS  PubMed  Google Scholar 

  318. Ward AC, Csar XF, Hoffmann BW, Hamilton JA . Cyclic AMP inhibits expression of D-type cyclins and cdk4 and induces p27Kip1 in G-CSF-treated NFS-60 cells Biochem Biophys Res Commun 1996 224: 10–16

    CAS  PubMed  Google Scholar 

  319. Umek RM, Friedman AD, McKnight SL . CCAAT-enhancer binding protein: a component of a differentiation switch Science 1991 251: 288–292

    CAS  PubMed  Google Scholar 

  320. Ramos RA, Nishio Y, Maiyar AC, Simon KE, Ridder CC, Ge Y, Firestone GL . Glucocorticoid-stimulated CCAAT/enhancer-binding protein alpha expression is required for steroid-induced cell cycle arrest of minimal-deviation rat hepatoma cells Mol Cell Biol 1996 16: 5288–5301

    CAS  PubMed  PubMed Central  Google Scholar 

  321. Timchenko NA, Wilde M, Darlington GJ . C/EBPa regulates formation of S-phase-specific E2F-p107 complexes in livers of newborn mice Mol Cell Biol 1999 19: 2936–2945

    CAS  PubMed  PubMed Central  Google Scholar 

  322. Johansen LM, Iwama A, Golub TR, Tenen DG . c-myc is a critical target for C/EBPα in granulopoiesis Blood 1999 94: 59a

    Google Scholar 

  323. Wang W, Wang X, Ward A, Touw I, Friedman AD . C/EBPa and G-CSF receptor signals cooperate to induce the myeloperoxidase and neutrophil elastase genes Blood 1999 94: 684a

    Google Scholar 

  324. Orita T, Shimozaki K, Murakami H, Nagata S . Binding of NF-Y transcription factor to one of the cis-elements in the myeloperoxidase gene promoter that responds to granulocyte colony-stimulating factor J Biol Chem 1997 272: 23216–23223

    CAS  PubMed  Google Scholar 

  325. Zhang P, Iwama A, Datta MW, Darlington GJ, Link DC, Tenen DG . Upregulation of interleukin 6 and granulocyte colony-stimulating factor receptors by transcription factor CCAAT enhancer binding protein a (C/EBPα) is critical for granulopoiesis J Exp Med 1998 188: 1173–1184

    CAS  PubMed  PubMed Central  Google Scholar 

  326. Yang F-C, Tsuji K, Oda A, Ebihara Y, Xu M, Kaneko A, Hanada S, Mitsui T, Kikuchi A, Manabe A, Watanabe S, Ikeda Y, Nakahata T . Differential effects of human granulocyte colony-stimulating factor (hG-CSF) and thrombopoietin on megakaryopoiesis and platelet function in hG-CSF receptor-transgenic mice Blood 1999 94: 950–958

    CAS  PubMed  Google Scholar 

  327. Dorsch M, Danial NN, Rothman PB, Goff SP . A thrombopoietin receptor mutant deficient in Jak-STAT activation mediates proliferation but not differentiation in UT-7 cells Blood 1999 94: 2676–2685

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

ACW, AS-B and IPT are supported by an NWO Pioneer Grant. DML is supported by NIH Training Grant CA60441. ADF is a Leukemia Society of America Scholar, and his research is supported by the Children's Cancer Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ward, A., Loeb, D., Soede-Bobok, A. et al. Regulation of granulopoiesis by transcription factors and cytokine signals. Leukemia 14, 973–990 (2000). https://doi.org/10.1038/sj.leu.2401808

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401808

Keywords

This article is cited by

Search

Quick links